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The transient waves caused by a line heat source with a uniform velocity inside isotropic homogeneous ther-
moelastic perfectly conducting half-space permeated into a uniform magnetic field are studied. The formulation
is applied under three theories of generalized thermoelasticity: Lord–Shulman theory with one relaxation time,
Green–Lindsay theory with two relaxation times, as well as the classical dynamical coupled theory. The problem
is reduced to the solution of three differential equations by introducing the elastic and thermoelastic potentials.
The normal mode analysis is used to obtain the expression for the temperature, displacement components
and the thermal stresses. Numerical results are given and illustrated graphically. Comparisons are made with
the results predicted by the three theories in the presence and absence of magnetic field and the internal heat source.

PACS numbers: 46.25.Hf

1. Introduction

The generalized thermoelasticity theories admit so-
-called second-sound effects, that is, which predict only
finite velocity of propagation for heat field. At present,
there are two different theories of the generalized ther-
moelasticity; the first was developed by Lord and Shul-
man (L-S) [1] who obtained wave-type heat conduction
by postulating a new law of heat conduction to replace
the classical Fourier law. This new law contains the heat
flux vector as well as its time derivative. It contains
also a new constant that acts as a relaxation time. Lord
and Shulman’s theory with a thermal relaxation time
has been used by several authors including Puri [2] and
Nayfeh and Nemat-Nasser [3] to study plane thermoelas-
tic waves in non-rotating infinite media. Surface waves
have been also studied by Agarwal [4] in the general-
ized thermoelasticity. By using the state space approach,
Ezzat and Othman [5] have studied a two-dimensional
magneto-thermoelasticity plane waves with thermal re-
laxation in a non-rotating medium of perfect conduc-
tivity, a two-dimensional electro-magneto-thermoelastic
problem was dealt with for a finitely conducting half-
-space by Sherief and Helmy [6]. Othman [7] used the
normal mode analysis to study two-dimensional problems
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of generalized thermoelasticity with one relaxation time
with the modulus of elasticity dependent on the reference
temperature for non-rotating and rotating medium, re-
spectively. Ezzat et al. [8] applied the normal mode anal-
ysis to a two-dimensional electro-magneto-thermoelastic
plane wave’s problem of a medium of perfect conductivity
with one relaxation time.

The second was developed by Green and Lindsay
(G-L) [9]. This theory contains two constants that act
as relaxation times and modifies all the equations of the
coupled theory not the heat conduction equation only.
The two theories both ensure finite speeds of propagation
for heat wave. Using the Green–Lindsay theory, Agar-
wal [10] studied respectively thermoelastic and magneto-
-thermoelastic plane wave propagation in an infinite non-
-rotation medium. In a paper by Schoenberg and Cen-
sor [11], the propagation of plane harmonic waves in a
rotating elastic medium without a thermal field has been
studied. It was shown there that the rotation causes the
elastic medium to be depressive and anisotropic.

Great attention has been devoted to the study of
electro-magneto-thermoelastic coupled problems based
on the generalized thermoelastic theories. In the con-
text of Green and Lindsay theory, Roy Choudhuri
and Mukhopadhyay [12] studied the propagation of
electro-magneto-thermoelastic harmonic waves in an un-
bounded isotropic conducting medium permeating uni-
form field when the entire medium rotates with a uni-
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form angular velocity; Ezzat and Othman [13] applied the
normal mode analysis to a problem of two-dimensional
electro-magneto-thermoelastic plane waves with two re-
laxation times in a medium of perfect conductivity.
Dhaliwal and Rokne [14] have solved a thermal shock
problem. Recently Othman [15] considered a problem of
plane wave propagation in a rotating medium in gener-
alized thermoelasticity with two relaxation times.

Heat source acting in an elastic body is widely used
in engineering involving materials processing, case hard-
ening and boiling nucleation etc. This kind of prob-
lem is very interesting in mathematics and important in
physics. Sarbani and Amitava Chakravorty [16] studied
the transient disturbances in half-space due to moving
internal heat source under L-S model and obtained the
solution for the displacements in the transform domain.
Under G-L theory, Chandrasekharaiah and Srinath [17]
have studied the cases of both continuous and impulsive
point heat source in an unbounded body and obtained
small time solutions with the aid of Laplace transforms.
Chandrasekharaiah and Murthy [18] have studied cylin-
drical waves due to a continuous line heat source in an un-
bounded body and have obtained small-time solutions by
employing the Laplace and Hankel transform. Hetnarski
and Ignaczak [19] have studied a plane heat sources in
half-space in great detail and have presented closed form
solutions.

In the present work we shall formulate the magneto-
-thermoelastic coupled two-dimensional problem of a
thermally and perfect conducting half-space solid in the
presence of moving internal heat source. The normal
mode method is used to obtain the exact expressions for
the considered variables. The distributions of the con-
sidered variables are represented graphically. A compar-
ison is carried out between the temperature, stresses and
displacements as calculated from the generalized thermo-
-elasticity L-S, G-L and classical dynamical (CD) theories
for the propagation of waves in semi-infinite elastic solids
in present and absent magnetic field and the internal heat
source.

2. Formulation of the problem

Let us consider a linear, homogeneous and isotropic
thermoelastic continuum occupying the region G given by
G = {(x, y, z)| y ≥ −L, 0 ≤ x, −∞ < z < ∞}, and the
surface y = −L which is stress free. The elastic medium
is permeated into a uniform magnetic field with constant
intensity H = (0, 0,H0) which is parallel to z-axis. A line
source suddenly starts moving inside the medium at a
depth L below the free surface with a uniform velocity in
the x-direction. The line source is parallel to the z-axis
so that all quantities are independent of z, and the third
component w of the displacement vector vanishes. When
all body forces are neglected the governing equations are:

(1) strain-displacement relations

eij =
1
2
(ui,j+uj,i), i, j = 1, 2. (1)

where ui = (u, v, 0) are the components of displacement

vector, eij are the components of strain tensor.
(2) Stress displacement relation

σij = 2µeij + λeδij − γ

(
1 + ν0

∂

∂t

)
Tδij . (2)

(3) Heat conduction equation

kT ii = ρCE

(
n1 + τ0

∂

∂t

)
Ṫ+γT 0

(
n1 + n0τ0

∂

∂t

)
ė

−
(

n1 + n0τ0
∂

∂t

)
Q, (3)

where n0 and n1 are parameters, Q is a moving internal
heat source and T0 is the reference temperature.

(4) Equation of motion
ρüi = σij,j + Fi, (4)

where Fi is the Lorentz force and is given in the form
Fi = µ0(J ×H)i. (5)

The variation of the magnetic and electric fields are
perfectly conducting slowly moving medium and are
given by Maxwell’s equations

curl h = J+Ḋ, (6)

curl E = −Ḃ, (7)

divB = 0, divD = 0, B = µ0H, D = ε0E, (8)

E = −µ0(u̇×H), (9)
where u̇ is the particle velocity of the medium, and the
small effect of temperature gradient on J is also ignored.
The dynamic displacement vector is actually measured
from a steady-state deformed position and the deforma-
tion is supposed to be small.

The components of magnetic intensity vector in the
medium are

H1 = H2 = 0, H3 = µ0[H0 + h(x, z, t)],

J1 = −H0
∂e

∂y
+ µ0H0ε0v̈, J2 = H0

∂e

∂x
− µ0H0ε0ü,

J3 = 0. (10)
Substituting Eqs. (6)–(10) into Eq. (5) we obtain

F1 = µ0H
2
0

∂e

∂x
− µ2

0H
2
0ε0

∂2u

∂t2
,

F2 = µ0H
2
0

∂e

∂y
− µ2

0H
2
0ε0

∂2v

∂t2
, F3 = 0, (11)

where
h = −H0(0,0, e). (12)

Substituting Eq. (2) and (11) into Eq. (4) we get

ρüi = (λ + µ)uj,jiδij + µui,jj − γ

(
1 + ν0

∂

∂t

)
T,iδij

+µ0H
2
0e,i − µ2

0H
2
0ε0üi. (13)

Equations (3) and (13) are the field equations of the
generalized linear magneto-thermoelasticity, applicable
to the coupled theory and two generalizations, as follows:

(i) The equations of the coupled magneto-
-thermoelasticity CD theory due to the moving internal
heat source, when
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ν0 = τ0 = 0, n0 = 0, n1 = 1. (14)
Equations (3) and (13) have the form

ρüi = (λ + µ)uj,jiδij + µui,jj − γT,iδij + µ0H
2
0e,i

−µ2
0H

2
0ε0üi, (15)

kT ,ii = ρCE Ṫ+γT 0ė−Q. (16)
(ii) Lord and Shulman’s theory due to internal heat

source, when
ν0 = 0, n0 = n1 = 1, τ0 > 0. (17)

Equation (13) is the same as Eq. (15) and Eq. (3) has
the form

kT ,ii =
(

1 + τ0
∂

∂t

) (
ρCE Ṫ+γT 0ė−Q

)
. (18)

(iii) Green and Lindsay’s theory due to internal heat
source, when

n0 = 0, n1 = 1, ν0 ≥ τ0 > 0. (19)
Equation (13) remains without change and Eq. (3) has
the form

kT ,ii = ρCE

(
1 + τ0

∂

∂t

)
Ṫ+γT 0ė−Q. (20)

(iv) The correspondent equations for the generalized
thermoelasticity without magnetic field due to moving
internal heat source results from the above mentioned
cases by taking H0 = 0.

Introducing the scalar and vector potentials ϕ,ψ
defined by

u = ϕ,x + ψ,y, v = ϕ,y − ψ,x, (21)
where

ϕ = ϕ(x, y, t), and ψ = ψ(x, y, t). (22)
Taking divergence and curl of equation of motion we
obtain

∇2ϕ− α

β2
ϕ̈ = m1

(
1 + ν0

∂

∂t

)
T, (23)

∇2ψ =
α

C2
T

ψ̈. (24)

>From Eq. (3) we can obtain

k∇2T = ρCE

(
n1 + τ0

∂

∂t

)
Ṫ

+ γT 0

(
n1 + n0τ0

∂

∂t

)
∇2ϕ̇−

(
n1 + n0τ0

∂

∂t

)
Q,(25)

where
α = 1 + C2

A/c
2
, C2

L = (λ + 2µ)/ρ,

β2 = C2
L + C2

A, C2
T = µ/ρ, ∇2 =

∂2

∂x2
+

∂2

∂y2
.

In order to use non-dimensional of Eqs. (23)–(25), let us
define the following set of dimensionless variables:

x̄i =
xi

CT ω∗
, ūi =

ui

CT ω∗
, ϕ̄ =

ϕ

(CT ω∗)2
,

ψ̄ =
ψ

(CT ω∗)2
, τ0 =

τ0

ω∗
, ν̄0 =

ν0

ω∗
,

θ = m1T, σ̄ij =
σij

µ
, h̄ =

h

H0
, Q̄ =

m1ω
∗Q

ρc
,

ω∗ =
K

ρCEC2
T

, i = 1, 2, (26)

where m1 = γ
ρβ2 (dropping the over bar for convenience).

Equations (23)–(25) become

∇2ϕ− αβ2
1 ϕ̈ =

(
1 + ν0

∂

∂t

)
θ, (27)

∇2ψ = αψ̈, (28)

∇2θ =
(

n1 + τ0
∂

∂t

)
θ̇+ε̄

(
n1 + n0τ0

∂

∂t

)
∇2ϕ̇

−
(

n1 + n0τ0
∂

∂t

)
Q, (29)

where β2
1 = C2

T

β2 , ε̄ = γT0m1
ρCE

and ε̄ is the coupling
parameter.

The constitutive equations reduce to

σxx = (α2
1 − 2)e + 2u,x − β∗

2

1

(
1 + ν0

∂

∂t

)
θ, (30)

σyy = (α2
1 − 2)e + 2v,y − β∗

2

1

(
1 + ν0

∂

∂t

)
θ, (31)

σxy = u,y + v,x, (32)
where

α2
1 =

λ

µ
+ 2 and β∗

2

1 =
γ

m1µ
. (33)

3. Normal mode analysis

The solution of the considered physical variables can
be decomposing in terms of normal modes analysis as fol-
lowing from:

[ϕ,ψ,θ,σij ](x,y,t) = [ϕ∗(x),ψ∗(x), θ∗(x), σ∗ij(x)]

× exp(ωt + iay), (34)

Q = Q∗exp(ωt + iay), Q∗ = Q0v0, (35)
where ω is the (complex) time constant, i =

√−1,
a is the wave number in the y-direction and
u∗(x), w∗(x), ϕ∗(x), ψ∗(x), θ∗(x) and σ∗ij(x) are the am-
plitude of the field quantities, v0 is the velocity of moving
internal heat source and Q0 is the magnitude of the in-
ternal heat source.

Using Eqs. (34) and (35), Eqs. (27)–(29) become
respectively

(D2 − a2
1)ϕ

∗(x) = (1 + ν0ω)θ∗(x), (36)

(D2 −m2)ψ∗(x) = 0, (37)

(D2 − a4)θ∗(x) = a3(D2 − a2)ϕ∗(x)−AQ0, (38)
where D = d

dx , A = A′v0, A′ = n1 + n0 τ0 ω,

a1 = a2 + αβ2
1ω2, (39)

a2 = ω(n1 + τ0ω), (40)

a3 = ωε̄A′, (41)

a4 = a2 + a2, (42)

m2 = a2 + αω2. (43)
Eliminating θ∗(x) between Eqs. (36) and (38), we get
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the following fourth order ordinary differential equation
satisfied by ϕ∗(x):

(D4 − b1D
2 + b2)ϕ∗(x) = −A(1 + ν0ω)Q0, (44)

where
b1 = a1 + (1 + ν0ω)a3 + a4, (45)

b2 = a1a4 + (1 + ν0ω)a3a
2. (46)

Equation (44) can be factorized as
(D2 − k2

1)(D
2 − k2

2)ϕ
∗(x) = −A(1 + ν0ω)Q0, (47)

where k2
j , j = 1, 2 are the roots of the following charac-

teristic equation:
k4 − b1k

2 + b2 = 0. (48)
The solution of Eq. (44) is given by

ϕ∗(x) =
2∑

j=1

Rj(a, ω)e−kjx − A(1 + ν0ω)Q0

b2
. (49)

In a similar manner, we get

θ∗(x) =
2∑

j=1

[
(k2

j − a1)/(1 + ν0ω)
]
Rj(a, ω)e−kjx

+
Aa1Q0

b2
, (50)

where Rj(a, ω) are parameters depending on a and ω.
The solution of Eq. (37) can be written as
ψ∗(x) = R3e−mx, (51)

since
u∗(x) = Dϕ∗ + iaψ∗, (52)

v∗(x) = iaϕ∗ −Dψ∗, (53)

e∗(x) = Du∗ + iav∗. (54)
Using Eqs. (49) and (51), in order to obtain the ampli-
tude of the displacement components u and v, which are
bounded as x →∞, then Eqs. (52) and (53) become

u∗(x) = −
2∑

j=1

Rj(a, ω)kje−kjx + iaR3e−mx, (55)

v∗(x) = ia




2∑

j=1

Rj(a, ω)e−kjx − A(1 + ν0ω)Q0

b2




+mR3e−mx. (56)
The stress component is in the form

σ∗xx =
2∑

j=1

[
k2

j

(
α2

1 − β∗
2

1

)
− (α2

1 − 2)a2 + β∗
2

1 a1

]

×Rje−kjx − 2iamR3e−mx

+
[
(α2

1 − 2)a2 − β∗
2

1 a1

] A(1 + ν0ω)Q0

b2
, (57)

σ∗yy =
2∑

j=1

[
k2

j

(
α2

1 − β∗
2

1 − 2
)
− α2

1a
2 + β∗

2

1 a1

]

×Rje−kjx + 2iamR3e−mx

+
(
a2α2

1 − β∗
2

1 a1

) A(1 + ν0ω)Q0

b2
, (58)

σ∗xy = −2ia
2∑

j=1

Rjkje−kjx − (a2 + m2)R3e−mx. (59)

4. Application

We consider a homogeneous isotropic thermoelas-
tic solid occupying the region G given by G =
{(x, y, z)| y ≥ −L, 0 ≤ x, −∞ < z < ∞}.

In the physical problem, we should suppress the pos-
itive exponentials that are unbounded at infinity. The
constants R1, R2 R3 have to be chosen such that the
boundary conditions on the surface at x = 0 take the
form

∂θ

∂x
= 0, (60)

σxy = 0, (61)

σxx = p0(y, t), (62a)
where p0 is a given function of y and t, with the initial
conditions

u = 0 and v = 0 at t = 0. (62b)
Equations (60)–(62a) in the normal mode form together
with Eqs. (43), (57) and (60) respectively, give

L1R1 + L2R2 = 0, (63)

M1R1 + M2R2 + M3R3 = 0, (64)

N1R1 + N2R2 + N3R3 = p′. (65)
Equations (63)–(65) can be solved for the three unknowns
R1, R2 and R3.

The solution of these equations can be written as

R1 =
∆1

∆
, (66)

R2 =
∆2

∆
, (67)

R3 =
∆3

∆
. (68)

where
∆1 = −L2M3p

′, (69)

∆2 = −L1M3p
′, (70)

∆3 = (L1M2 − L2M1)p′, (71)

∆ = L1λ1 − L2λ2, (72)

Lj = kj

[
(k2

j − a1)/(1 + ν0ω)
]
, j = 1, 2, (73)

Mj = 2iakj , j = 1, 2, (74)

M3 = a2 + m2, (75)

Nj = k2
j

(
α2

1 − β∗
2

1

)
− (α2

1 − 2)a2 + β∗
2

1 a1,

j = 1, 2, (76)

N3 = −2iam, (77)

p′ = p0 −
[
a2(α2

1 − 2)− β∗
2

1 a1

] A(1 + ν0ω)Q0

b2
, (78)
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λ1 = M2N3 −M3N2, (79)

λ2 = M1N3 −M3N1. (80)

5. Numerical results and discussion
In order to illustrate the theoretical results obtained in

preceding section and to compare these in the context of
various theories of thermoelasticity, we now present some
numerical results. In the calculation process, we consider
the material medium as that of copper. Since ω is the
complex time constant then we take ω = ω0 + iζ. The
other constants of the problem are taken as ω0 = 2; ζ = 1;
p∗ = 100; a = 5; T0 = 293 K, λ = 7.55×1010 kg m−1 s−2,
µ = 3.86×1010 kg m−1 s−2, Cl = 3.845×102 m2 K−1 s−2,
αt = 17.87 × 10−6 K−1, ρ = 8.96 × 103 kg m−3, µ0 =
4π × 10−7.

Figures 1–12 show six curves predicted by different the-
ories of thermoelasticity. In these figures, the solid lines
represent the CD theory, dashed lines represent the L-S
theory and the dotted lines represent the G-L theory. At
the boundary surface, y = −5, the distributions of dis-
placement components u and v versus time are shown in
Figs. 1 and 3 under three theories at the nondimensional
quantities Q0 = 10, v0 = 2 and α = 1.8, i.e. in pres-
ence of moving internal heat source and magnetic field.
Figures 1 and 3 depict the distributions of displacement
components u and v versus x at the boundary for dif-
ferent values of time (e.g. t = 0.1, t = 0.4); we can see
that the displacement component v always starts from
the zero value and terminates at the zero value. Also we
can see that the displacement decreases monotonically
with x as increasing the time t. Figure 1 shows that in
all three theories CD, L-S and G-L the values of displace-
ment component u for t = 0.4 are large compared with
those for t = 0.1, the values of displacement component
u decrease in the ranges 0 ≤ x ≤ 0.4 and 3 ≤ x ≤ 5.5,
the values of displacement component u increase in the
ranges 0.4 ≤ x ≤ 3 and 5.5 ≤ x ≤ 8 for t = 0.4, but
the values of displacement component u decrease in the
ranges 0 ≤ x ≤ 0.8 and 3.2 ≤ x ≤ 6 for t = 0.1, then
increase otherwise in the range 0 ≤ x ≤ 10, while con-
verge to zero with increasing the distance x at x ≥ 10.
Figure 3 shows that in all three theories the values of dis-
placement component v for t = 0.1 are large compared to
those for t = 0.4, the values of displacement component
v decrease with increasing the distance x and converge
to zero with increasing the distance x for x ≥ 10.

Figures 2 and 4 show the distributions of displace-
ment components u and v versus x at the boundary at
t = 0.1, v = 2 and the internal heat source Q0 = 10 for
different values of magnetic field (α = 1 without magnetic
field and α = 1.8 with magnetic field). It should be ob-
served that the displacement component v always starts
from the zero value in the range 0 ≤ x ≤ 10 and termi-
nates at the zero value, and decreases monotonically with
x as increasing the magnetic field. Also we can observe
that the displacement component u increases monoton-
ically with x as increasing the magnetic field. The two

Fig. 1. Displacement distribution u versus x with
different times.

Fig. 2. Displacement distribution u versus x with
different external magnetic field.

figures show that the relaxation times have salient effect
to the distribution of displacement components u and v
at small time range. Figure 2 depicts that the displace-
ment component u under L-S theory is greater than that
under the CD-theory while it is smaller than that under
the G-L theory. With increase of the magnetic field, the
relaxation time has a decreasing effect.

Behavior of temperature in all three theories CD, L-S
and G-L for the two different values of t is similar, as
shown in Fig. 5. Values of the temperature for t = 0.4

Fig. 3. Displacement distribution v versus x with
different times.
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Fig. 4. Displacement distribution v versus x with
different external magnetic field.

Fig. 5. Temperature distribution θ versus x with
different times.

are small compared to those for t = 0.1 in the range
0 ≤ x ≤ 0.7 for CD, in the range 0 ≤ x ≤ 0.8 for L-S
and in the range 0 ≤ x ≤ 0.9 for G-L, but in the range
0.7 ≤ x ≤ 2.9 for CD, in the range 0.8 ≤ x ≤ 3.7 for
L-S and in the range 0.9 ≤ x ≤ 3.5 for G-L are large,
while values are the same for the three theories at x > 9.
Behavior of temperature in all three theories CD, L-S and
G-L for the two different values of magnetic field (α = 1
without magnetic field and α = 1.8 with magnetic field)
is similar, as shown in Fig. 6. Values of temperature for

Fig. 6. Temperature distribution θ versus x with
different external magnetic field.

Fig. 7. Stress distribution σxx versus x with different
times.

Fig. 8. Stress distribution σxx versus x with different
external magnetic field.

α = 1 are small compared to those for α = 1.8 in the
range 0 ≤ x ≤ 1.4 for CD, in the range 0 ≤ x ≤ 1.6 for
L-S and in the range 0 ≤ x ≤ 1.8 for G-L, but in the
range 1.4 ≤ x ≤ 3.8 for CD, in the range 1.6 ≤ x ≤ 4.6
for L-S and in the range 1.8 ≤ x ≤ 5 for G-L are large
and then small, while values are the same for the three
theories at x > 9.

Behavior of normal stress σxx in all three theories CD,
L-S and G-L for t = 0.4 are small compared to those for
t = 0.1 in the range 0 ≤ x ≤ 2.5; large in the range 2.4 ≤

Fig. 9. Stress distribution σxy versus x with different
times.
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Fig. 10. Stress distribution σxy versus x with different
external magnetic field.

Fig. 11. Stress distribution σyy versus x with different
times.

x ≤ 4.8, while values are the same for the three theories
at x > 10, as depicted in Fig. 7. Behavior of normal
stress σxx in all three theories CD, L-S and G-L for the
two different values of magnetic field (α = 1 without
magnetic field and α = 1.8 with magnetic field) is similar,
as shown in Fig. 8. Values of normal stress for α = 1
are large compared to those for α = 1.8 in the range
0 ≤ x ≤ 1.1 for CD, in the range 0 ≤ x ≤ 1.3 for L-S
and in the range 0 ≤ x ≤ 1.6 for G-L, but in the range
1.1 ≤ x ≤ 3.7 for CD, in the range 1.3 ≤ x ≤ 4.1 for L-S

Fig. 12. Stress distribution σyy versus x with different
external magnetic field.

and in the range 1.6 ≤ x ≤ 4.7 for G-L are small, while
values are the same for the three theories at x > 9.

Behaviors of tangential coupled stress in all three the-
ories CD, L-S and G-L are for the two different values
of magnetic field in the range 0 ≤ x ≤ 3.2 for CD,
in the range 0 ≤ x ≤ 3.8 for L-S and in the range
0 ≤ x ≤ 4.3 for G-L, also in the range 5.4 ≤ x ≤ 7.5
for CD, 6.5 ≤ x ≤ 9.2 for L-S and 7.2 ≤ x ≤ 10 for G-L,
large otherwise, while values are the same for the three
theories and converge to zero at x > 10.

Behaviors of tangential coupled stress in all three the-
ories CD, L-S and G-L for α = 1 are large compared
to those for α = 1.8 in the ranges 0 ≤ x ≤ 3.5 and
4.5 ≤ x ≤ 6.2 for CD, in the ranges 0 ≤ x ≤ 3.3 and
5.4 ≤ x ≤ 7.7 for L-S and in the ranges 0 ≤ x ≤ 3.6
and 6.2 ≤ x ≤ 8.7 for G-L, and small otherwise in the
range 0 ≤ x ≤ 10, while values are the same for the three
theories and converge to zero at x > 10.

Behaviors of normal stress σyy in all three theories CD,
L-S and G-L for t = 0.1 are small compared to those for
t = 0.4 in the ranges 0 ≤ x ≤ 3.7 and 6 ≤ x ≤ 7.8 for
CD, in the ranges 0 ≤ x ≤ 4.5 and 6.9 ≤ x ≤ 8.5 for
L-S and in the ranges 0 ≤ x ≤ 5.1 and 7.6 ≤ x ≤ 10 for
G-L, but in the ranges 3.7 ≤ x ≤ 6 and 7.8 ≤ x ≤ 10
for CD, in the range 4.5 ≤ x ≤ 6.9 for L-S and in the
range 5.1 ≤ x ≤ 7.6 for G-L are large, while the values
are the same for the three theories at x > 10, as depicted
in Fig. 11.

Figure 12 shows that the behavior of normal stress σyy

in all three theories CD, L-S and G-L for the two different
values of magnetic field (i.e. α = 1 without magnetic field
and α = 1.8 with magnetic field) is similar as a wave.
The values of normal stress σyy for α = 1.8 are large
compared to those for α = 1 in the ranges 0 ≤ x ≤ 3.2
and 4.8 ≤ x ≤ 6.9 for CD, in the ranges 0 ≤ x ≤ 3.5
and 5.5 ≤ x ≤ 8.4 for L-S and in the ranges 0 ≤ x ≤ 3.9
and 6.2 ≤ x ≤ 9 for G-L, but these values are small in
the ranges 3.2 ≤ x ≤ 4.8 and 6.9 ≤ x ≤ 8.3 for CD, in
the ranges 3.5 ≤ x ≤ 5.5 and 5.5 ≤ x ≤ 8.4 for L-S and
in the range 3.9 ≤ x ≤ 6.2 for G-L, while the values are
the same for the three theories at x > 10 and converge
to zero.

By comparing the figures of solutions obtained under
the three thermoelastic theories, important phenomena
are observed:

1. The curves in the context of the CD, L-S and
G-L theories decrease exponentially with increas-
ing x, this indicates that the thermoelastic waves
are unattenuated and nondispersive, where purely
thermoelastic waves undergo both attenuation and
dispersion.

2. The values of the distributions of all the physi-
cal quantities converge to zero with increasing the
distance x.

3. The curves of the physical quantities with L-S the-
ory in most of figures are lower in comparison
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with those under G-L theory, due to the relaxation
times.

4. The dependence of the internal heat source has a
significant effect on the thermal and mechanical in-
teractions, and plays a significant role in all the
physical quantities.

5. It is clear from Figs. 2, 4, 6, 8, 10, and 12 that
the magnetic field plays a significant role in all the
physical quantities.

6. It is clear from Figs. 1, 3, 5, 7, 9, and 11 that the
different times play a significant role in all the phys-
ical quantities.

7. All the physical quantities satisfy the boundary
conditions and initial conditions.

6. Conclusion

Transient waves created by a line heat source inside
isotropic homogeneous thermoelastic half-space perme-
ating into a uniform magnetic field are studied under
three theories of generalized thermoelasticity CD, L-S
and G-L. The problem is reduced to the solution of
three equations, one involving the elastic vector poten-
tial and the other two coupled, involving the thermo-
elastic scalar potential and the temperature. The nor-
mal mode analysis used in this article to solve the prob-
lem is applicable to a wide range of problems in differ-
ent branches (Othman [20], Othman and Song [21] and
Othman and Singh [22]). It can be applied to boundary-
-layer problems, which are described by the linearized
Navier–Stokes equations in electrohydrodynamics (Oth-
man [23]). This method gives exact solutions without any
assumed restrictions on either the temperature or stress
distributions. The results are graphically described for
the medium of copper. We can conclude that the mag-
netic field has a great effect on the displacement compo-
nents and this effect produces the same trend under the
three theories. The results show that the relaxation times
have salient effect to the distribution of displacement at
small values of time. The present theoretical results may
provide interesting information for experimental scien-
tists/researchers/seismologist working on this subject.
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