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Oscillator Strengths for Allowed Transitions in Li(II)
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Electric dipole oscillator strengths have been computed for transitions between both multiplet and individual
lines in the Li(II) ion. The weakest bound electron potential model theory has been used. We have employed both
numerical Coulomb approximation wave functions and numerical non-relativistic Hartree–Fock wave functions in
the determination of expectation values of radii. The necessary energy values have been taken from experimental
ionization energies. The oscillator strengths calculated with parameters obtained by using the two different wave
functions have been compared not only to each other but also to other data taken from literature. A good
agreement with results in literature has been obtained.
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1. Introduction

Some spectroscopic data such as oscillator strengths
and transition probabilities are required in laser spec-
troscopy, for new atomic clocks, laboratory plasma diag-
nostic, astrophysical studies, studies of controlled ther-
monuclear reactions and Tokamak devices. Therefore,
the accurate estimate of these data in the atomic and
ionic systems is important. The calculation of some phys-
ical parameters corresponding to individual energy lev-
els especially to highly lying levels and Rydberg states
in multi-electron atoms is always a difficult problem in
theoretical studies. Many methods such as the Hartree–
Fock approximations, configuration interaction methods,
semi-empirical methods and many-body perturbation
theories exist for the calculation of transition probabili-
ties, oscillator strengths and lifetimes of excited levels for
atomic or ionic systems. The lithium is an important test
case for atomic theory. The considered approximations in
atomic structure theory must be capable first to represent
accurately lithium atom in order to have possibility to
calculate reasonably the multi-electron atoms. Theoreti-
cal calculations in atomic lithium have been widely stud-
ied by many authors [1–12]. The most sensitive results
have been presented by Yan and Drake [4], McAlexander
et al. [5] and Zhang et al. [11]. Yan and Drake have calcu-
lated the non-relativistic oscillator strengths for the 1s22s
2S–1s22p 2P o and 1s22p 2P o–1s23d 2D multiplet transi-
tions with an accuracy of ±6 × 10−6 using variational
wave functions in the Hylleraas coordinates. McAlexan-
der et al. have extracted a value for 2p 2P o lifetime via
photoassociation. Zhang et al. have determined oscillator
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strengths and dispersion coefficients of a number of the
low-lying states of lithium. They have calculated wave
functions and energies in frozen core approximation. Al-
though ionized lithium is the second member of the he-
lium isoelectronic sequence, Li(II) has not been exten-
sively studied experimentally. Theoretically, Li(II) has
been extensively treated as a member of the He isoelec-
tronic sequence. The theoretical calculation of oscillator
strengths is usually a difficult task. The calculations in-
clude Hylleraas-type wave functions. Schiff et al. have
calculated oscillator strengths for members of the helium
isoelectronic sequence up to Z = 10 [13]. Drake has
presented oscillator strengths for some dominant transi-
tions of helium and helium-like ions using the Hylleraas–
Scherr–Knight variation-perturbation method [14]. An-
derson and Weinhold have presented dipole oscillator
strengths of the low-lying singlet and triplet transitions
in He and Li(II) using Hylleraas-type wave functions [15].
Kono and Hattori have calculated nonrelativistic oscilla-
tor strengths for the transitions n ≤ 5 in helium-like ions
with Z = 3–7 [16]. Theodosiou has calculated the Ry-
dberg state lifetimes and oscillator strengths for the s–p
and p–d transitions in the singly ionized lithium using
Hylleraas-type wave functions [17].

The data in the literature include generally the
Coulomb approximation results for Li(II). This approxi-
mation is valid in case of large radial distances of active
electron. The weakest bound electron potential model
(WBEPM) theory presents reliable results for both large
and small radial distances of active electron. In the
present work, many transitions have been considered
in order to show validity of the WBEPM theory. The
absorption oscillator strengths have been calculated in
Li(II) ion. The obtained results have been compared with
available data in literature.
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2. Theoretical procedure

The absorption oscillator strength or f -value for an
electric dipole transition between an initial state |j〉
and a final state |j′〉 is given as [18]:

fjj′ =
2(EJ′ − EJ)
3(2J + 1)

S. (1)

Here, EJ′ − EJ is the transition energy in atomic
units, 2J + 1 is the degeneracy of initial level and S
is the electric dipole line strength in atomic units.
Line strength is determined according to the coupling
schemes and the transition types in atomic or ionic
systems. The text book written by Cowan [18] reports in
detail, how the line strength can be calculated according
to coupling schemes being considered and for different
transition types. The most important quantity for the
calculation of S line strength is determination of the
radial transition integral or transition matrix element.
LS coupling is the dominant coupling scheme in light
atoms and electric dipole line strength for transitions
between two excited levels in this coupling scheme can
be given to be [18]:

√
SLS ≡ 〈[(. . .α1L1, l2)L (. . .S1s2) S]J |

∣∣∣r(1)
N

∣∣∣
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Here, n is the number of equivalent electrons in a shell
and the bracketed term is the coefficient of fractional
parentage. The tables of numerical values of the frac-
tional parentage coefficients are given in the literature for
various shells [18, 19]. On the other hand, W (abcd; ef)
is called as the Racah coefficient or Wigner’s 6-j symbol
and it is used to describe the coupling between two or
more angular momentum. P

(1)
l2l2′

quantity given in Eq. (3)
is known to be radial transition integral or transition ma-
trix element.

In this work, the WBEPM theory has been employed
to calculate the radial transition integral. This theory
is based on distinction of the weakest bound electrons
(WBE) and non-weakest bound electrons (NWBE) in
given atomic or ionic systems. By the separation of the
electrons in a given system, complex many-electron prob-
lem can be simplified as the single electron problem and
so can be solved easily. This theory has been developed
by Zheng [20, 21] and has been applied to calculate vari-
ous atomic properties such as energy levels, ionization po-
tentials, transition probabilities, oscillator strengths and
lifetimes of excited levels in the many-electron atomic and
ionic systems [22–26]. In the WBEPM theory, electronic
radial wave functions are presented as a function of the
Laguerre polynomial in terms of some parameters which
are determined using the experimental energy data and
the expectation values of radii [22–26],

Rnl(r) =

(
2Z∗
n∗

)l∗+3/2

[
2n∗

(n−l−1)!Γ (n∗ + l∗ + 1)
]1/2

× exp
(
−Z∗r

n∗

)
rl∗L2l∗+1

n−l−1

(
2Z∗r
n∗

)
. (4)

After obtaining the relevant parameters, radial transition
integral or radial matrix element between two different
states can be determined easily using radial wave func-
tions given in Eq. (4). The expectation value of rk or
radial transition integral for k = 1 in case of transition
from the level (ni, li) to the level (nf , lf ) can be obtained
as [22, 23]:

〈ni, li| rk |nf , lf 〉 =
∫ ∞

0

rk+2Rnili(r)Rnf lf (r)dr

= (−1)nf+ni+lf+li

(
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×
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×
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)
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(
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×
(
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m3

)
. (5)

In order to solve this radial transition integral, Z∗, n∗

and l∗ parameters must be known. These parameters are
obtained by solving the following couple of equations:

I = −ε =
Z∗

2

2n∗2
, (6)

〈r〉 =
3n∗

2 − l∗(l∗ + 1)
2Z∗

. (7)

Here I is ionization energy and 〈r〉 is expectation value
for radius of weakest bound electron. In the determina-
tion of Z∗, n∗ and l∗ parameters, relevant energy values
have been taken from experimental energy data in the
literature and expectation values for the radii of levels
have been calculated by using wave functions obtained
from two different theoretical approximations. The pa-
pers given by Zheng et al. describe in detail the WBEPM
theory [20–26].

3. Results and conclusion

In the present paper, the electric dipole oscillator
strengths have been computed using the WBEPM the-
ory in Li(II) ion. The experimental energy values and
expectation values of radii belonging to states are used in
Eqs. (6) and (7) to obtain the Z∗, n∗ and l∗ parameters.
The expectation values of radii for all of states have been
determined by using both numerical Coulomb approxi-
mation (NCA) wave functions [27] and non-relativistic
Hartree–Fock (NRHF) wave functions [28]. The neces-
sary energy values have been taken from experimental
energy data in the literature [29]. The obtained param-
eters are used in Eqs. (5), (2) and (1) to yield oscillator
strengths between whole states. The WBEPM theory is
a semi-empirical method. It is a one-electron approxima-
tion which assumes that each radiative transition rate can
be approximated by hydrogenic expressions in which the
orbital parameters are fitted to both energy and radius of
the weakest bound electron. In this method, relativistic
effects are neglected except for the binding energies. The
expectation values of radii and energy values which are
used in determination of Z∗, n∗ and l∗ parameters are
very important. The determination of the expectation
values of radii is more crucial than energy values in the
WBEPM theory, because experimental ionization energy
data are very precise. In this study, we have employed
both NCA wave functions and NRHF wave functions in
determination of relevant parameters to obtain more sen-
sitive and reliable results. This study presents a compar-
ison of oscillator strengths calculated by using different
parameters obtained from two approximation wave func-
tions in the WBEPM theory framework for Li(II) ion.

TABLE I
Multiplet oscillator strengths for some lines of atomic lithium.
Lower state Upper state Terms Oscillator strengths

L U L U
This work

(NCA)

This work

(NRHF)

Accepted

values

(Ref. [29])

Zhang

et al.

(Ref. [11])

Biemont

(Ref. [2])
Fischer et al. (Ref. [8])

1s22s 1s22p 2S 2P o 0.7423 0.760 0.753 0.7475 0.7655 0.74695, 0.747a, 0.747b

1s22s 1s23p 2S 2P o 0.0030 0.0034 0.00550 0.00469 0.00350 0.0047

1s22p 1s23s 2P o 2S 0.1113 0.1103 0.115 0.1106 0.1129 0.1105

1s22p 1s24s 2P o 2S 0.01263 0.01269 0.0125 0.01284 0.0129 0.01283

1s22p 1s23d 2P o 2D 0.6438 0.6888 0.666 0.6388 0.6534 0.6385

1s22p 1s24d 2P o 2D 0.1249 0.1262 0.122 0.1227 0.1228

1s23s 1s23p 2S 2P o 1.2113 1.2308 1.22 1.2153 1.2310 1.2152

1s23p 1s23d 2P o 2D 0.07448 0.07425 0.0743 0.07378 0.0552 0.0741

1s23p 1s24s 2P o 2S 0.2234 0.2254 0.223 0.2232 0.2275 0.2231

1s23p 1s24d 2P o 2D 0.5203 0.5457 0.527 0.5227 0.5452

1s23d 1s24p 2D 2P o 0.01837 0.01615 0.0184 0.01807 0.0162

1s23d 1s24f 2D 2F 1.0158 1.0189 1.01 1.0153 1.017

1s24s 1s24p 2S 2P o 1.6882 1.6997 1.63 1.6410 1.659

1s24p 1s24d 2P o 2D 0.1358 0.1356 0.135 0.1343 0.1021

1s24d 1s24f 2D 2F 0.003134 0.003127 0.00312 0.00234 –
a Yan and Drake [4].
b McAlexander et al. [5].
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TABLE II
Absorption oscillator strengths for Li(II).

Lower

state

Upper

state
Terms

Statistical

weight
Oscillator strengths

L U L U L U
This

work

(NCA)

This

work

(NRHF)

Accepted

values

(Ref. [29])

At. line

data

Theodosiou

(Ref. [17])

Cann and

Thakkar

(Ref. [12])

Others

1s2 1s2p 1S 1P o 1 3 4.10×10−1 4.70×10−1 4.57×10−1 [A] 4.62×10−1 4.51×10−1 4.566×10−1 4.56×10−1 [15]

1s2 1s3p 1S 1P o 1 3 1.01×10−1 1.21×10−1 1.11×10−1 [A] 1.12×10−1 1.089×10−1 1.106×10−1 1.10×10−1 [15]

1s2s 1s2p 3S 3P o 3 9 3.09×10−1 3.12×10−1 3.08×10−1 3.08×10−1 3.079×10−1 3.07×10−1 [15]

3 1 3.43×10−2 3.46×10−2 3.43×10−2 [A′]

3 5 1.71×10−1 1.73×10−1 1.71×10−1 [A′]

3 3 1.03×10−1 1.04×10−1 1.03×10−1 [A′]

1s2s 1s3p 3S 3P o 3 9 1.72×10−1 1.86×10−1 1.86×10−1 1.87×10−1 1.87×10−1 1.87×10−1 [15]

3 5 9.59×10−2 1.03×10−1 1.03×10−1 [A′]

3 3 5.75×10−2 6.23×10−2 6.20×10−2 [A′]

3 1 1.91×10−2 2.07×10−2 2.07×10−2 [A′]

1s2s 1s2p 1S 1P o 1 3 2.12×10−1 2.01×10−1 2.14×10−1 [A] 2.13×10−1 2.14×10−1 2.125×10−1 2.13×10−1 [15]

1s2s 1s3p 1S 1P o 1 3 2.52×10−1 1.06×10−1 2.56×10−1 [A] 2.64×10−1 2.55×10−1 2.57×10−1 2.57×10−1 [15]

1s2p 1s3s 3P o 3S 9 3 3.84×10−2 3.63×10−2 3.89×10−2 3.91×10−2

3 3 3.84×10−2 3.63×10−2 3.89×10−2 [B′]

5 3 3.84×10−2 3.63×10−2 3.88×10−2 [B′]

1 3 3.84×10−2 3.63×10−2 3.90×10−2 [B′]

1s2p 1s3d 3P o 3D 9 15 6.27×10−1 6.26×10−1 6.24×10−1 6.26×10−1 6.20×10−1 6.246×10−1 6.246×10−1 [16]

3 5 4.70×10−1 4.70×10−1 4.68×10−1 [A′]

5 7 5.27×10−1 5.26×10−1 5.24×10−1 [A′]

1 3 6.27×10−1 6.26×10−1 6.24×10−1 [A′]

5 5 9.41×10−2 9.40×10−2 9.36×10−2 [A′]

3 3 1.56×10−1 1.56×10−1 1.56×10−1 [A′]

5 3 6.27×10−3 6.26×10−3 6.24×10−3 [A′]

1s2p 1s4s 3P o 3S 9 3 6.94×10−3 6.71×10−3 6.94×10−3 7.18×10−3

3 3 6.94×10−3 6.71×10−3 6.94×10−3 [B′]

5 3 6.94×10−3 6.71×10−3 6.94×10−3 [B′]

1 3 6.94×10−3 6.71×10−3 6.92×10−3 [B′]

1s2p 1s4d 3P o 3D 9 15 1.25×10−1 1.25×10−1 1.22×10−1 1.23×10−1 1.22×10−1 1.232×10−1 1.232×10−1 [16]

1 3 1.25×10−1 1.25×10−1 1.22×10−1 [B′]

5 7 1.05×10−1 1.05×10−1 1.02×10−1 [B′]

3 5 9.40×10−2 9.41×10−2 9.12×10−2 [B′]

5 5 1.88×10−2 1.88×10−2 1.82×10−2 [B′]

3 3 3.13×10−2 3.13×10−2 3.03×10−2 [B′]

5 3 1.25×10−3 1.25×10−3 1.22×10−3 [B′]

1s2p 1s3s 1P o 1S 3 1 3.13×10−2 6.61×10−2 3.14×10−2 [B] 3.08×10−2

1s2p 1s3d 1P o 1D 3 5 7.13×10−1 7.29×10−1 7.14×10−1 [A] 7.14×10−1 7.15×10−1 7.116×10−1 7.116×10−1 [16]

1s2p 1s4s 1P o 1S 3 1 6.04×10−3 1.10×10−2 6.09×10−3 [B] 6.14×10−3

1s2p 1s4d 1P o 1D 3 5 1.19×10−1 1.50×10−1 1.19×10−1 [B] 1.20×10−1 1.20×10−1 1.192×10−1 1.192×10−1 [16]

1s2p 1s5d 1P o 1D 3 5 4.64×10−2 4.65×10−2 4.16×10−2 [B] 4.27×10−2 4.33×10−2 4.274×10−2 4.27×10−2 [16]

1s3s 1s3p 3S 3P o 3 9 5.12×10−1 5.15×10−1 5.07×10−1 5.12×10−1 5.13×10−1

3 5 2.84×10−1 2.86×10−1 2.82×10−1 [B′]

3 3 1.70×10−1 1.71×10−1 1.69×10−1 [B′]

3 1 5.69×10−2 5.73×10−2 5.63×10−2 [B′]

1s3s 1s4p 3S 3P o 3 9 2.54×10−1 2.55×10−1 1.89×10−1 1.86×10−1 1.868×10−1

3 5 1.41×10−1 1.42×10−1 1.05×10−1 [B′]

3 3 8.47×10−2 8.52×10−2 6.29×10−2 [B′]

3 1 2.82×10−2 2.84×10−2 2.10×10−2 [B′]

1s3s 1s3p 1S 1P o 1 3 3.62×10−1 3.44×10−1 3.61×10−1 [B] 3.63×10−1 3.63×10−1 3.627×10−1



Oscillator Strengths for Allowed Transitions in Li(II) 173

TABLE II (cont.)
Absorption oscillator strengths for Li(II).

Lower

state

Upper

state
Terms

Statistical

weight
Oscillator strengths

L U L U L U
This work

(NCA)

This work

(NRHF)

Accepted

values

(Ref. [29])

At. line

data

Theodosiou

(Ref. [17])

Cann and

Thakkar

(Ref. [12])

Kono and

Hattori

(Ref. [16])

1s3p 1s3d 3P o 3D 9 15 9.08×10−2 9.08×10−2 9.05×10−2 9.08×10−2 9.05×10−2 9.08×10−2 9.07×10−2

5 7 7.63×10−2 7.62×10−2 7.61×10−2 [A′]

3 5 6.81×10−2 6.81×10−2 6.79×10−2 [A′]

1 3 9.08×10−2 9.07×10−2 9.06×10−2 [A′]

5 5 1.36×10−2 1.36×10−2 1.36×10−2 [A′]

3 3 2.27×10−2 2.27×10−2 2.26×10−2 [A′]

5 3 9.08×10−4 9.08×10−4 9.06×10−4 [A′]

1s3p 1s4s 3P o 3S 9 3 8.41×10−2 8.40×10−2 8.50×10−2 8.51×10−2

3 3 8.41×10−2 8.40×10−2 8.51×10−2 [B′]

5 3 8.41×10−2 8.40×10−2 8.51×10−2 [B′]

1 3 8.41×10−2 8.40×10−2 8.50×10−2 [B′]

1s3p 1s4d 3P o 3D 9 15 5.00×10−1 5.10×10−1 5.09×10−1 5.05×10−1 5.02×10−1 5.033×10−1 5.034×10−1

3 3 1.25×10−1 1.27×10−1 1.27×10−1 [B′]

5 7 4.20×10−1 4.28×10−1 4.28×10−1 [B′]

5 5 7.50×10−2 7.65×10−2 7.66×10−2 [B′]

5 3 5.00×10−3 5.10×10−3 5.10×10−3 [B′]

3 5 3.75×10−1 3.82×10−1 3.83×10−1 [B′]

1 3 5.00×10−1 5.10×10−1 5.10×10−1 [B′]

1s3p 1s5s 3P o 3S 9 3 1.52×10−2 1.53×10−2 1.58×10−2 1.60×10−2

3 3 1.52×10−2 1.53×10−2 1.58×10−2 [B′]

5 3 1.52×10−2 1.53×10−2 1.59×10−2 [B′]

1 3 1.52×10−2 1.53×10−2 1.58×10−2 [B′]

1s3p 1s6d 3P o 3D 9 15 5.24×10−2 5.33×10−2 5.29×10−2 5.39×10−2 5.388×10−2

3 3 1.31×10−2 1.33×10−2 1.32×10−2 [B′]

5 7 4.40×10−2 4.47×10−2 4.45×10−2 [B′]

3 5 3.93×10−2 3.99×10−2 3.97×10−2 [B′]

1 3 5.24×10−2 5.33×10−2 5.28×10−2 [B′]

5 5 7.87×10−3 7.99×10−3 7.94×10−3 [B′]

5 3 5.24×10−4 5.33×10−4 5.30×10−4 [B′]

1s3d 1s4p 3D 3P o 15 9 1.99×10−2 1.89×10−2 1.99×10−2 1.96×10−2

7 5 1.99×10−2 1.89×10−2 1.99×10−2 [B′]

5 3 1.49×10−2 1.41×10−2 1.49×10−2 [B′]

3 1 1.10×10−2 1.05×10−2 1.10×10−2 [B′]

5 5 4.97×10−3 4.73×10−3 4.96×10−3 [B′]

3 3 8.30×10−3 7.88×10−3 8.27×10−3 [B′]

3 5 5.53×10−4 5.25×10−4 5.52×10−4 [B′]

1s3d 1s5p 3D 3P o 15 9 3.66×10−3 3.47×10−3 3.68×10−3 3.71×10−3

7 5 3.66×10−3 3.47×10−3 3.68×10−3 [B′]

5 3 2.74×10−3 2.60×10−3 2.76×10−3 [B′]

3 1 2.03×10−3 1.92×10−3 2.05×10−3 [B′]

5 5 9.14×10−4 8.68×10−4 9.22×10−4 [B′]

3 3 1.52×10−3 1.44×10−3 1.54×10−3 [B′]

3 5 1.01×10−4 9.65×10−5 1.02×10−4 [B′]

1s3d 1s3p 1D 1P o 5 3 1.45×10−2 1.45×10−2 1.56×10−2 [B] 1.46×10−2

1s3d 1s4p 1D 1P o 5 3 8.97×10−3 8.20×10−3 9.11×10−3 [B] 8.90×10−3

1s3p 1s4s 1P o 1S 3 1 6.87×10−2 1.31×10−1 6.86×10−2 [B] 6.69×10−2

1s3p 1s4d 1P o 1D 3 5 6.52×10−1 6.68×10−1 6.53×10−1 [B] 6.54×10−1 6.5174×10−1 6.517×10−1

1s3p 1s5s 1P o 1S 3 1 1.32×10−2 2.28×10−2 1.38×10−2 [B] 1.36×10−2

1s3p 1s5d 1P o 1D 3 5 1.30×10−1 1.33×10−1 1.39×10−1 [B] 1.42×10−1 1.414×10−1 1.414×10−1

1s3p 1s6s 1P o 1S 3 1 6.36×10−3 9.75×10−3 5.41×10−3 [B] 5.34×10−3

1s3p 1s6d 1P o 1D 3 5 5.67×10−2 5.76×10−2 5.53×10−2 [B] 5.64×10−2 5.623×10−2

[15] Anderson and Weinhold.

[16] Kono and Hattori.

Estimated accuracy rates (Ref. [29]): A′ ≤ 2%, A ≤ 3%, B′ ≤ 7%, B ≤ 10.
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The lithium atom is the simplest system including
core, valence, and valence-core interactions. 2s–2p tran-
sition has been a subject of controversy over years in
lithium atom. The results given by Yan and Drake [4]
and McAlexander et al. [5] are known to be very sen-
sitive data. To illustrate the accuracy of our calcula-
tions, the absorption oscillator strengths are calculated
for some multiplet dominant transitions and transitions
between the low energy states in atomic lithium and are
given in Table I. Our multiplet oscillator strength results
have been compared with available data [2, 4, 5, 8, 11]
and accepted values taken from NIST [29]. The rele-
vant parameters have been determined using both NCA
wave functions and NRHF wave functions. Considering
all transitions, our results calculated by using the param-
eters obtained from two different wave functions are in
good agreement with data given in the literature. But
especially for 2s–2p transition, the oscillator strength re-
sult calculated by using parameters determined from the
NCA wave functions is in quite good agreement with
available high-accuracy ab initio data of Yan and Drake
[4] and McAlexander et al. [5]. The average agreement of
our oscillator strength results is within 0.6–0.7% to their
results. This agreement indicates that the present results
are reliable within confines of underlying the WBEPM
theory.

The data in Table II present the oscillator strengths
obtained by using the WBEPM theory for both multi-
plet and individual lines in Li(II) ion. The NRHF wave
functions and the NCA wave functions are used for expec-
tation values of radii in determination of relevant param-
eters. The data containing both multiplet and individual
lines for comparisons in the literature are quite limited
for many transitions which are considered in this study.
Therefore, our results have been compared with avail-
able data [12, 15–17] only for multiplet values and with
accepted values taken from NIST [29] and with atomic
line data for both multiplet values and individual lines.
The NIST values are given together with their accuracy
rating in relevant columns. It can be shown from Ta-
ble II that the oscillator strengths calculated by using
parameters determined from NCA wave functions pro-
vide usually values in much better agreement with the
results given in the literature for Li(II). The NRHF ap-
proximation is much more sophisticated than the numer-
ical Coulomb approximation. The expectation values of
the radii belonging to levels can be defined reliably by
using the NRHF wave functions in many cases.

The results taken from NIST include the values of
Wiese for dominant transitions and the values calculated
from Coulomb approximation (CA) for other transitions
belonging to excited levels. According to the CA method,
the wave functions are constructed by using experimental
binding energy of the active electron at large radial dis-
tances. If the active electron is in an inner orbital with
very small amplitude outside the core or outer contri-
bution to the matrix element belonging to the consider-
ing transition is very small, the assumptions used in the

CA method are not valid. Moreover, the major problem
and error source of CA method is in approximating the
atomic potential within the core region. To date, several
attempts have been made to rectify this shortcoming, by
assuming certain analytical or numerical approximations
of the core part of the atomic potential [27, 30]. For
example, in the NCA, the wave functions are obtained
numerically by direct inward integration of Schrödinger’s
equation starting with the correct asymptotic boundary
conditions. The integration is terminated at a certain
small radial distance, so that the wave function is nor-
malized to unity, and the obtained expectation value of
radius agrees with the hydrogenic formula [27, 30].

The methods such as Coulomb approximation, quan-
tum defect approximations and weakest bound elec-
tron potential model theory are known as semi-empirical
methods. In all of these methods, the experimental bind-
ing energy of the active electron is used to construct an
approximate radial wave function. While the results ob-
tained from semi-empirical methods can be similar for
large radial distances, these methods can present differ-
ent results for small radial distances. The accuracy of
the evaluated spectroscopic parameters such as oscilla-
tor strengths and transition probabilities depends upon
the energies of initial and final levels and the ionization
potential Elimit of the atom in all of semi-empirical meth-
ods. However, the expectation values of radii belonging
to levels play an important role in the WBEPM theory.
According to this theory, the expectation values of radii
belonging to levels can be calculated with known theoret-
ical methods such as multiconfigurational Hartree–Fock
(MCHF) method, numerical non-relativistic Hartree–
Fock (NRHF), Roothaan–Hartree–Fock (RHF) method,
Hartree–Kohn–Sham (HKS) method, time-dependent
Hartree–Fock (TDHF), numerical Coulomb approxima-
tion (NCA) etc.

Previously, Celik et al. used expectation values of
radii determined from NRHF wave functions and ob-
tained very satisfactory transition probability results for
atomic lithium [10] nitrogen [31, 32], oxygen [33], fluo-
rine [34], sodium [35] and potassium [36]. The results
obtained from this study clearly show that accurate ex-
pectation values of radii are necessary in the WBEPM
theory framework. In this theory, the determination of
Z∗, n∗, l∗ parameters is sufficient for the calculations of
oscillator strength. The WBEPM theory can be used to
calculate the oscillator strengths for both highly excited
states and low lying states without any increase of com-
plexity in calculation process.
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