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A Simple Approximation of an Infinite Dilution Solvating
Energy of Ions in Dipolar and Polarizable Solvents

F. Gradzki∗
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The infinite dilution solvating energy of ions in a solvent is considered. The ions are treated as hard spheres
with point charges and the solvent molecules are treated as dipolar and polarizable hard spheres. The diameter of
ion can be different than the diameter of solvent molecule. It can be seen that contribution from permanent dipo-
lar moment of the solvent is bigger (and so more important) than the contribution from polarizability of the solvent.

PACS numbers: 31.70.Dk

1. Introduction

Experimental studies of ion–water clusters have pro-
vided insights into the microscopic aspects of hydration
phenomena [1]. In this paper there is calculated the infi-
nite dilution solvating energy of ions in a solvent of dipo-
lar and polarizable hard spheres. The ions are treated as
hard spheres with point charge e and diameter σaa, and
the solvent molecules are treated as dipolar and polariz-
able hard spheres with diameter σ00.

Usually model calculations treat solvent molecules as
dipolar hard spheres. It is interesting how much the re-
sults will be changed if we take into account also polar-
izability of solvent molecules. Also often in calculations
diameter of ions is equal to diameter of solvent particles.
In this paper we try to show how diameter of ions changes
the results. Our results show that polarizability of sol-
vent is also important. We also can see that solvating
energy decreases with increasing diameter of ions.

2. Theory

Let us introduce the excess chemical potential µex

equal to [2]:
µex = µ− µid, (1)

where µ is the chemical potential of the ion in the solu-
tion and µid is the chemical potential of the ideal gas. If
we have one ion and N solvent particles, then the energy
of interaction can be written in the form

Φ1+N = Φs(a, 1, . . . , N) + Φe(a, 1, . . . , N), (2)
where Φs represents the short-ranged potential energy
and Φe represents the electrostatic long-ranged poten-
tial energy. The long-ranged potential energy is given by
[3, 4]:
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Φe = −(1/2)M+TM −E+
0 M + (1/2)E+αE, (3)

where M , E and E0 are N ×1 column matrices with ev-
ery element as an ordinary 3-component vector. Similarly
T and α are N ×N matrices with T ij = (1− δij)T (rij)
and αij = α(i)δij where δij is the Kronecker δ, the (.)+
indicates the transposed matrix. In particular E0i =
Eia = E0(ri) is the electric field at point ri due to the
charge of the ion. The Eia and T (rij) are defined by

Eia = −e∇i(r−1
ia ) = er−3

ia ria = er−2
ia sia, (4)

T (rij) = r−3
ij (sijsij − I), (5)

where sij = (ri − rj)/rij and rij = |rij |, and I is the
unit tensor. The matrices M of the actual dipole mo-
ments M i and E of the microscopic electric fields E(ri)
are related to the permanent dipole moments mi = mni

(ni is unit vector), and values E0(ri) of the electric field
of ion by

M = m + αE, (6)

E = E0 + TM . (7)

In order to eliminate E and M , the inverse matrix A
of I −αT is introduced. It satisfies [3, 4]:

A−AαT = I, (8)
where Iij = Iδij . Elimination of E and M by use of (6),
(7) and (8) yields the final form

M = A(m + αE0), (9)

E = A(E0 + Tm). (10)
Substituting Eq. (9) and Eq. (10) into Eq. (3) we obtain,
after rearrangement, the electrostatic part of the poten-
tial energy in the form [5]:

Φe = −(1/2)m+TAm−E+
0 Am

− (1/2)E+
0 AαE0. (11)

For isotropic polarizability the N×N dimensional matrix
A is equal to

(165)



166 F. Gradzki

A = (I −αT )−1 =
∑

(αT )n, (12)
where sum is over n ≥ 0. From Eq. (11) we see that

Φe = Φ0e + Φ1e + Φ2e, (13)
where

Φ0e = −(1/2)m+TAm, (14)

Φ1e = −E+
0 Am, (15)

Φ2e = −(1/2)E+
0 AαE0. (16)

Introducing Eq. (12) into Eq. (15) and Eq. (16) we
have

〈Φ1e〉 = −〈E+
0 Am〉 = −〈E+

0

∑
(αT )nm〉, (17)

〈Φ2e〉 = −(1/2)〈E+
0 AαE0〉

= − (1/2)〈E+
0

∑
(αT )nαE0〉, (18)

where 〈Φ1e〉 denotes an average electrostatic energy of the
one ion interacting with dipolar solvent particles, 〈Φ2e〉
denotes an average electrostatic energy of the one ion
interacting with polarizable solvent particles.

Let us take only the first term in the sums. Then we
have

〈Φ1e〉 = −
∫

E1a ·m1η
(1)(ra, 1)d(1), (19)

〈Φ2e〉 = −(1/2)α
∫

E1a ·E1aη(1)(ra, 1)d(1), (20)

where η(1) is the reduced distribution function in the sol-
vent containing one ion [6]. It may be expressed by

η(1)(ra, 1) = n2(ra, 1)/na
1(ra), (21)

where n2(ra, 1) is a two-particle distribution function.
The contribution to 〈Φ1e〉 in Eq. (19) is O(α0), whereas
the remaining terms in Eq. (17) are O(α). In the asymp-
totic region of α → 0 these terms can be neglected.

Because we have
n2(ra, 1) = na

1(ρ/4π)g2(ra, 1), (22)
where g2(ra, 1) is radial distribution function, then we
obtain

η(1)(ra, 1) = (ρ/4π)g2(ra, 1)

= (ρ/4π)[1 + h2(ra, 1)], (23)
where h2(ra, 1) depends on orientation of dipolar solvent
particle.

Then we have

〈Φ1e〉 = −ρ/(4π)
∫

E1a ·m1h2(ra, 1)d(1)

= − ρ/(4π)
∫

E1a ·m1hE(ra, 1)(s1a · n1)d(1)

= − ρm/3
∫

(E1a · s1a)hE(ra, 1)dr1a

= − eρm/3
∫

r−2
1a hE(ra, 1)dr1a

= − 4πeρm/3
∫

hE(r1a)dr1a, (24)

where n1 = m1/m1, hE is the component of total correla-
tion function for ion-dipole in the solvent of pure dipolar
fluid and the integral in Eq. (24) is considered by Chan

et al. [7]. The Fourier transform of hE(r1a) satisfies the
equation [7]:

hE(k) = cE(k) + (1/3)ρc+(k)hE(k), (25)
where for cE(k) and for c+(k) we used expressions given
by Chan et al. [7], so we have from Eq. (25)

hE(k) = [1− (1/3)ρc+(k)]−1cE(k). (26)
We take approximation c+(k) = c+(0), cE(k) =
−4πiβem/k, then hE(ra, 1) is equal to

hE(r1a) = βem[1− (1/3)ρc+(0)]−1r−2
1a . (27)

Then the integral
∫

hE(r1a)dr1a is equal to∫
hE(r1a)dr1a = (βem/σ1a)[1− (1/3)ρc+(0)]−1, (28)

where σ1a is the smallest distance between the ion and a
dipolar particle. It can be seen that [8]:

1− (1/3)ρc+(0) = q(2ξ) ≡ q+, (29)
where q(η) is the Percus Yevick hard sphere inverse com-
pressibility at reduced density η:

q(η) = (1 + 2η)−2(1− η)−4 (30)
and the constant ξ is the solution of the equation

q(2ξ)− q(−ξ) = (4πρ/3)βm2 ≡ 3y. (31)
So we have∫

hE(ra, 1)dr1a = (βem/σ1a)/q+, (32)

and
〈Φ1e〉 = −(4π/3)(e2/σ1a)βm2ρ/q+. (33)
It can be seen that
(4πβρm2/3)/q+ = 3y/q+ = (q+ − q−)/q+

= 1− 1/ε1, (34)
where ε1 is the pure dipolar solvent dielectric constant.
So

〈Φ1e〉 = −e2/σ1a(1− 1/ε1). (35)
At infinite dilution, the Helmholtz free energy for

charging a hard sphere in a dipolar solvent (at constant
volume) can be obtained from 〈Φ1e〉:

F1(e)− F1(0) =
∫

(〈Φ1e〉/e)de

= − (1/2)e2/σ1a(1− 1/ε1). (36)
F1(q) is the Helmholtz free energy for transferring a hard
sphere of charge q from the gas phase to the dipolar
solvent. Interaction of the hard sphere with N dipo-
lar solvent particles will be the same as interaction of
the one hard sphere (with diameter of the ion) with N
other hard spheres with diameter of the dipolar parti-
cles (dipole moment of solvent particles does not interact
with hard sphere). Then for the hard sphere in dipolar
solvent we have [9]:

βµex
0 = [−3 + 2(1− η)−1 + (1− η)−2]

+ 2η(1− η)−2[1 + (1− η)−1]x3

+(3/2)[1− (1− η)−2](x− 1)2(x + 1)

− (3/2)[1− (1− η)−1]2x(x− 1)2
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+ [−3/2 + 2(1− η)−1 − (1/2)(1− η)−2

+ ln(1− η)](3x2 − 2x3 − 1), (37)
where

η = (π/6)(N/V )σ3
00, (38)

x = σaa/σ00. (39)
The 〈Φ2e〉 is equal to
〈Φ2e〉 = −(1/2)αρ/(4π)

∫
E1a ·E1ag2(ra, 1)d(1)

= − (1/2)αρ

∫
E1a ·E1ag2(ra, 1)dr1a

= − (1/2)αρe2

∫
r−4

a1 g2(ra, 1)dr1a

= − 2παρe2

∫
r−2
a1 ghs(r1a)dra1, (40)

where the radial distribution function between ion and
solvent particle is approximated by radial distribution
function of hard spheres.

Then for an infinite dilution we have
µex = µex

0 + µex
1 + µex

2 = µex
0 − (1/2)e2/σa1(1− 1/ε1)

− 2παρe2

∫
r−2
1a ghs(r1a)dr1a. (41)

In the case when ghs(r1a) = 1, we obtain
〈Φ2e〉 = −(1/2)e2/σ1a(1− 1/ε2), (42)

where ε2 is dielectric constant of an ideal polarizable gas
and is equal to [10]:

ε2 = (1− 4παρ)−1, (43)
or

µex = µex
0 − (1/2)e2/σa1(1− 1/ε1)

− (1/2)e2/σa1(1− 1/ε2). (44)
The results for this approximation are presented in Table.

TABLE
The infinite dilution solvating energy of different sizes
ions. The reduced density of solvent ρ∗ = 0.7, the
reduced dipolar moment m∗ = 2.0 and the reduced scalar
polarizability α∗ = 0.065.

x βµ1 〈βΦ1e〉 〈βΦ2e〉 βF1 βµ2 βµ

0.5 2.35 −260.83 −76.24 −130.42 −206.65 −204.29
0.6 3.06 −244.53 −71.47 −122.26 −193.74 −190.68
0.7 3.90 −230.15 −67.27 −115.07 −182.34 −178.44
0.8 4.88 −217.36 −63.53 −108.68 −172.21 −167.32
0.9 6.03 −205.92 −60.19 −102.96 −163.15 −157.11
1.0 7.35 −195.62 −57.18 −97.81 −154.99 −147.63
1.1 8.86 −186.31 −54.45 −93.15 −147.61 −138.74
1.2 10.57 −177.84 −51.98 −88.92 −140.90 −130.33
1.3 12.49 −170.11 −49.72 −85.05 −134.77 −122.28
1.4 14.62 −163.02 −47.65 −81.51 −129.16 −114.53
1.5 17.00 −156.50 −45.74 −78.25 −123.99 −106.99

x = σaa/σ00, β = 1/kT

3. Discussion

We want to show that polarizability of water is giv-
ing important contribution (about 1/3) to our results.
Also we observe important decrease of solvating energy
with increasing diameter of ions. We also can see that
short-ranged contribution is small (see βµ0) and little be
increasing with increase of diameter of ion.

Let us define a reduced density ρ∗ = ρσ3
00 (where σ00

is the diameter of dipolar and polarizable hard sphere), a
reduced dipolar moment m∗2 = βm2/σ3

00, and at the be-
ginning we assume that diameter of ion is the same as di-
ameter of dipole particle, then we define a reduced charge
e∗2 = βe2/σ00 and a scalar polarizability α∗ = α/σ3

00.
The calculations were done for ρ∗ = 0.7, m∗2 = 4.0, and
e∗2 = 200.0. This reduced charge is such that T = 298 K,
the ion is singly charged and σ00 = 2.8 A. Patey and Val-
leau [11] took σ00 = 3.0 A and got e∗2 = 188.0. Usually in
literature σ00 < 3.0 A, for example Robinson and Stokes
[12] are giving σ00 = 2.8 A.

At the above reduced density and reduced dipole mo-
ment we obtain from Eq. (31) value of ξ = 0.15712,
K = 0.42867, q+ = 11.99 and ε1 = 45.7.

The average electrostatic energy of the one ion inter-
acting with dipolar solvent particles given by Eq. (35) is
in agreement with results of Garisto et al. [13].

The calculations have been done for ion diameter from
0.5σ00 to 1.5σ00. In Table there are given the values of the
βµex

0 , the values of the Helmholtz free energy F1, which
are independent of polarizability, the values of the 〈βΦ2e〉
for α∗ = 0.065, which are proportional to polarizability,
the values of the βµex

1 +βµex
2 , and the values of the βµex.

First we can see that result depends in significant way on
diameter of the ion.

One common view is that extending experimental stud-
ies to larger cluster sizes would give the single-ion abso-
lute hydration free energies not obtainable by classical
thermodynamic methods [1]. It seems that our paper
shows classical calculations, which are giving first simple
estimation of this problem. These calculations can be
improved by taking terms with higher power of polariz-
ability. Also we can see that the βF1 are giving the main
contribution in this approximation and that the contri-
bution 〈βΦ2e〉 from the polarizability is important.

The polarizability of water is α = 1.44 A3 [14], so is
giving α∗ = 0.065. Also we can make calculations for
ions with smaller diameter than 0.5σ00 and for ions with
larger diameter than 1.5σ00.

The diameter of ion Na+ is about 0.7σ00, the diameter
of ion Li+ is about 0.5σ00, and the diameter of ion OH−
seems to be equal to σ00 and the diameter of ion Cl− is
about 1.3σ00. We can try to compare our results with
the results of Asthagiri et al. [1].

For LiOH the experimental value µ = −233.3 kcal/mol
(see Table III in [1]) and from our simple approxima-
tion we have µ1 + µ2 = −214.1 kcal/mol, similarly for
NaOH the experimental value µ = −208.1 kcal/mol
and from our simple approximation we have µ1 + µ2 =
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−199.7 kcal/mol. We see that differences between ex-
periment and calculations of Asthagiri et al. [1], are of
the same order as our calculations which are based on
classical theory.

More attention should be given to the change in a sol-
vent structure from the pure solvent to that involved in
the solution around the solute [15]. A neutron diffrac-
tion experiments are combined with data of the Monte
Carlo simulation [16–18], which are giving a number of
solvent particles around ions. Molecular dynamics sim-
ulation has been performed to study the effect of the
polarizabilities of model anions on the ionic solvation in
water clusters [19]. The hydrations of Na+ and K+ were
investigated by means of Monte Carlo simulation [20].
Many-body potentials for aqueous Li+, Na+, Mg2+, and
Al3+ ions have been constructed [21].

The electrical field around the ions is very strong, so
we can expect that solvent particles will be very close
to ions. The number of solvent particles around one ion
is limited by geometry. The maximal number of solvent
particles in the first shell cannot be bigger than

N1 = 4π(σa0)2/(σ00)2, (45)
where σa0 = (σaa + σ00)/2.

More exactly the hydration numbers in the first shell
can be calculated from the integral [22]:

N1 = ρ

∫
g(r)4πr2dr, (46)

where integral is from σa0 to the outer radius of the hy-
dration shell. We usually do not know the g(r) and the
outer radius of the hydration shell, so for the first estima-
tion we can use Eq. (45). For ions of Na+ from Eq. (45)
the N1 is about 9 and for ions of Li+ the N1 is about 7.
In the literature for ions of Na+ [20, 21] the N1 is about
6 and for ions of Li+ the N1 is about 4, which also should
be given by Eq. (46).
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