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Bose–Einstein Condensation of Hard Sphere Homogeneous
Gas in Static Fluctuation Approximation
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The condensation fraction, transition temperature, and energy per particle for a hard sphere interacting ho-
mogeneous Bose gas using the static fluctuation approximation have been determined. The transition temperature
at liquid helium density has been found to be lower than that for the noninteracting gas. Both superfluidity and
the Bose–Einstein condensation have been found to occur at the same transition temperature. Our results are
consistent with results obtained by other methods.
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1. Introduction

The observations of the Bose–Einstein condensation
(BEC) in alkaline atoms motivate us to shed further light
on homogeneous Bose gas using a hard sphere potential
model. The simple hard sphere potential model is appro-
priate for a dilute Bose gas and reasonable for relatively
dense systems [1]. Experimental developments of BEC in
alkali vapors have stimulated a great interest in the theo-
retical studies of Bose gases. Specifically, in the presence
of harmonic confinement, the many-body theory of in-
teracting Bose gases has given rise to several unexpected
features. This has opened new theoretical prospects in
this field.

The validity of the static fluctuation approximation
(SFA) [2–4] for arbitrary systems (strongly or weakly in-
teracting systems) and at any finite temperature gives us
the opportunity to study Bose gases at different potential
strengths and ranges. The dynamics of weakly interact-
ing Bose gases is modeled by the mean-field theories [5].
The SFA technique is more advanced compared with the
mean field approximation, where in SFA, the square of
the local-field operator is replaced by its mean value. The
physical implication is that the true quantum-mechanical
spectrum of this operator is replaced by a distribution
around the expectation value of the local-field operator.

In many previous works the transition temperature was
found to be dependent on the system density as well as
on the interaction potential. The transition tempera-
ture for a repulsive interaction increased at low densi-
ties and decreased at high densities [6]. Different ana-
lytical formulae are observed for transition temperature,
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where in Ref. [7] the deviation in the transition tempera-
ture TC for interacting Bose gas from that for ideal Bose
gas T0 is ∆TC/T0 ∝ (na3)1/2, while Stoof has obtained
∆TC/T0 ∝ (na3)1/3 in [8], and ∆TC/T0 ∝ (na3)0.34 have
obtained in [6], where n is the density number of the
system and a is the s-wave scattering length. This dis-
crepancy in the transition temperature in addition to the
wide variety in calculated or measured condensate frac-
tion and its dependence on the methods used [9–11] mo-
tivates us to shed more light on bosonic systems.

We will determine the condensation fraction, tran-
sition temperature, and energy per particle for three-
-dimensional infinite homogeneous Bose gas using a po-
tential model.

2. Theoretical framework

The static fluctuation approximation for neutral many-
-bosonic system will be present in this section for a po-
tential model described by

V (r) =

{
V0, r ≤ a,

0, r > 0,

where V0 and a are the constant potential strength and
core radius.

The closed set of nonlinear integral equations describ-
ing any infinite homogeneous Bose system is [2, 3]:

Êk = ε(k) +
1
Ω

∑
q

W (k, q) n̂q, (1)

where k is the linear momentum of the particle, Êk is the
local-field operator, Ω — the normalization volume, ε(k)
incorporates the kinetic energy for a particle and chem-
ical potential µ which is given by ε(k) = ~2k2

2m − µ, and

(154)
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W (k, q) represents the Fourier transform of the potential
defined as W (k, q) = V (0) + V (|k − q|).

The occupation number is given by

n(k) =
1
2


 1

exp
(
β

(〈
Êk

〉
+ ϕk

))
− 1

+
1

exp
(
β

(〈
Êk

〉
− ϕk

))
− 1


 , (2)

the fluctuation ϕk in the local-field operator is deter-
mined from the following equation:

η(k)ϕ2
k =

1
Ω

∑
p

W (k, p) 〈∆n̂k∆n̂p〉 , (3)

the fluctuation is a function of the correlation function
〈∆n̂k∆n̂q〉, which is given by

〈∆n̂k∆n̂q〉c =
η(k)
Ω

∑
p

W (k, p) 〈∆n̂p∆n̂q〉 (4)

and〈
(∆n̂k)2

〉
= 〈n̂k〉 (1 + 〈n̂k〉)

+
2η(k)

Ω

∑
p

W (k, p) 〈∆n̂p∆n̂k〉 . (5)

The index c in Eq. (4) denotes that k 6= q. The function
η(k) is given by

η(k) =
1

2ϕk


 1

exp
(
β

(〈
Êk

〉
+ ϕk

))
− 1

− 1

exp
(
β

(〈
Êk

〉
− ϕk

))
− 1


 . (6)

Finally, the chemical potential can be determined from
the conservation of the total number of particles

N =
∑

k

〈n̂k〉 . (7)

This set of nonlinear integral equations is solved nu-
merically, where the mass m is chosen to be the 4He
atomic mass and the density number is taken to be the
liquid helium number density n = 0.02165 Å−3. Af-
ter that, the condensation fraction, critical temperature,
and the energy per particle are calculated. Through-
out our calculations a natural system of units has been
used, such as ~ = 1 = m, the conversion factor being
~2
m = 12.120048 K Å2.

3. Results and discussion

The closed system of nonlinear integral equations ob-
tained in Sect. 2 is solved numerically over the po-
tential strength ranges V0 (0–25 K) and core radius a
(0.0–2.5 Å). The transition temperature is calculated
from the BEC fraction results. A remarkable phase tran-
sition in the energy per particle is observed.

Figure 1 shows the condensation fraction versus tem-
perature at different values of potential strength. We ob-
serve that the BEC fraction and transition temperature
depend strongly on the potential strength. As the po-
tential strength increases, the condensation fraction de-
creases. The transition temperature, Tc, is determined
from Fig. 1, it is decreased by increasing the potential
strength, as can be deduced from Table, this result is
in consistence with results obtained in [5], Hartree–Fock
theory calculation [12], and with renormalization group
calculation [13]. As the potential strength increases, the
equilibrium interparticle spacing increases and the prob-
ability of overlapping between the thermal waves de-
creases.

Fig. 1. The condensation fraction of Bose gas as a
function of temperature T for different values of poten-
tial strength V0 at constant core radius a = 2.5 Å.

TABLE
The transition temperature of Bose gas for
different values of potential strength V0 at
constant core radius a = 2.5 Å.

V0 [K] 00.00 05.00 10.00 15.00 20.00 25.00
Tc [K] 3.14 1.55 0.90 0.70 0.55 0.50

The effect of the core radius was also studied at
V0 = 10 K. Figure 2 shows the condensation fraction
versus temperature at different values of the core radius.
It is clear that the transition temperature decreases as
the core radius increases. As the core radius increases,
the equilibrium interparticle spacing increases. This, in
turn, decreases the condensation fraction. It is clear that
the condensation fraction and transition temperature are
strongly dependent on the potential parameters.

The effect of the potential parameters on the energy
per particle has been studied. Figures 3 and 4 show the
potential strength and the core radius effect versus tem-
perature, respectively. Both figures show a discontinu-
ity at temperatures equal to the transition temperature
detected from the condensation fraction figure for inter-
acting system. This discontinuity may represent a phase
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Fig. 2. The condensation fraction of Bose gas as a
function of temperature T for different values of core
radius a at constant potential strength V0 = 10 K.

Fig. 3. The energy per particle of Bose gas as a func-
tion of temperature T for different values of potential
strength at constant core radius a = 2.5 Å.

Fig. 4. The energy per particle of Bose gas as a func-
tion of temperature T for different values of core radius
a at constant potential strength V0 = 10 K.

transition from superfluidity state to the normal state,
which is in consistence with Ref. [6] for Bose systems
in three dimensions, where both superfluidity and BEC
occur at the same transition temperature.

At low temperatures, T < Tc, the energy per particle
is close to the corresponding value of the ideal system —
whatever the potential strength or core radius is. The
effect of the potential parameters arises at T > Tc, and
the energy per particle is shifted up, as shown in Figs. 3
and 4. The amount of shift increases with increasing the
potential parameters. The discontinuity in energy per
particle cannot appear precisely at small values of core
radius.

4. Conclusion

>From these results we may conclude that the poten-
tial strength effect appears more precisely in the physi-
cal quantities comparing with the core radius. At high
density, namely liquid helium density, the condensation
fraction and the transition temperature decrease with in-
creasing the potential strength and/or core radius. Both
BEC and superfluidity occur at the same transition tem-
perature.
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