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Cooperation is essential to biological organizations and human society.

In this paper, the conditions of

dilemmas resolving by quantum strategies in the three games, Prisoners’ Dilemma, Chicken Game and Stag Hunt,
are presented. The rule for the evolution of cooperation in general quantum games, b/c > coth? v, is put forward.
The formation of the rule is similar to those of the five rules in the classical game theory summarized by Nowak.
b/c is still the benefit-to-cost ratio of the altruistic act, while v is a measure for the game’s entanglement. The
rule is the prerequisite for the realization of cooperation in quantum games.

PACS numbers: 02.50.Le, 03.67.—a, 87.23.—n

1. Introduction

Recently, there are two focal topics in game theory.
One is concerned with mechanisms of cooperation [1-3].
Cooperation is essential to the existence and stability of
biological organizations and human society [4-7]. Indi-
vidual cells rely on the cooperation among their compo-
nents. Multicellular organisms exist as a result of the co-
operation among their cells. Social insects, such as ants
and bees, also live by cooperation. Human beings may
be the champions of cooperation. From hunter-gatherer
societies to nation-states, cooperation, in a sense, is the
decisive organizing principle of human society. Cooper-
ation is indispensable to the construction of a high level
of organization as well. The very origin of life and the
advent of human languages are all based on cooperation.

However, cooperation is always vulnerable to exploita-
tion by defectors. In the absence of a specific mechanism
for the evolution of cooperation, natural selection favors
defectors. A key assumption in the classical game theory
is that every player in games is perfectly rational when
he selects his strategies to maximize his payoff [8, 9].
The rationality leads players to selfish behavior. Every
gene, every cell, and every organism does its best to pro-
mote its own evolutionary success at the expense of its
competitors. Therefore the evolution of cooperation re-
quires specific mechanisms. One central objective of the
evolutionary game theory is to understand the workings
of cooperative behaviors of individuals in an ecosystem
[10-12]. There are at least five mechanisms so far [13-27]
that can guarantee the evolution of cooperation when
their requirements are fulfilled, as are shown in Table II.

Another focal topic is extending game theory into
quantum domain. As more and more interest falls in
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quantum computing and quantum information theory
[28, 29|, games are studied in quantum version so that
dilemmas can be resolved. Many interesting results
have been put forward, for the concepts of quantum
mechanics, e.g., quantum superpositions, entanglement
and quantum operations, are exploited [30-37]. Meyer
studied the PQ penny flip game in quantum world and
showed that a player implementing quantum strategies
would always defeat his opponent playing classical strate-
gies [30]. Eisert et al. quantized Prisoners’ Dilemma
(PD) and demonstrated that the dilemma could be es-
caped [31]. Marinatto and Weber investigated the Bat-
tle of the Sexes game in quantum domain and found a
unique equilibrium if entangled quantum strategies were
allowed [32]. Lee and Johnson reported that quantum
games looked more efficient than classical ones [33]. Du
et al. realized quantum PD on their nuclear magnetic
resonance quantum computer [34]. Possible applications
of quantum games in biology were thoroughly discussed
by Igbal et al. [35, 36], in economics by Piotrowski and
Sladkowski [37]. It is obvious that the quantum game
theory is paid more and more attention to though it has
not been accepted by scientists at all [38-41]. One can
refer to Igbal’s and Rosero’s theses for a general review
on the quantum game theory [42, 43].

The quantum game theory offers a new mechanism for
the evolution of cooperation. It is natural to ask whether
there is a rule in the quantum game theory, which is sim-
ilar to the ones in the classical game theory. In Ref. [31],
two players in a maximally entangled quantum game can
escape from PD. However, it is difficult for a maximally
entangled quantum game to be realized in practice, for
no quantum system can be completely isolated from its
environment. System—environment interactions should
induce decoherence of quantum systems [44-46]. The
purpose of this paper is to look for the rule for the realiza-
tion of cooperation in a general quantum game. We shall
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analyze the payoffs in non-maximally entangled quantum
games so as to obtain their modified matrices, from which
we can get what we want.

The remainder of this paper is organized as follows. In
Sect. 2, the three dilemmas discussed in this paper and
the rules for the evolution of cooperation in the classical
game theory are introduced. In Sect. 3, the quantiza-
tion scheme employed in this research is reviewed. Then
the payoffs in non-maximally entangled quantum games
are calculated. In Sect. 4, the modified matrices of some
quantum games are obtained, from which the conditions
of the corresponding dilemmas resolving and the rule for
the evolution of cooperation in the quantum game the-
ory are acquired. Finally, the results in this paper are
concluded and commented on.

2. Dilemmas and rules for cooperation
in classical game theory

Given that the status of cooperative players are of-
ten equal in games, only the dilemmas in 2 X 2 symmet-
ric games will be discussed in this paper. The games
can be classified into 78 types, of which four ones are in
dilemmas [47]. They are PD, Chicken Game (CG), Stag
Hunt (SH) and Deadlock Game (DG) [48], as are shown
in Table I.

TABLE I
Payoff matrices for some games.

Game| Payoff matrix |Nash Equilibrium| Pareto Optimal
C D
PD (C (r,7) (s,) (D, D) (C,0)
D (ts) (p.p)
¢ (rr) (1)
CG C,D) or (D,C (oNe
D (tp) (s.5) (C, D) or (D,C) (¢, C)
c (t,t) (s,r)
SH C,C)or (D,D C,C
D (rs) (pp) (C,C)or (D, D) (¢, c)
D (s,t) (r,7r)

t > r >p>s. In matrices, strategy C' denotes cooperation,
strategy D defection. The first payoffs refer to the player
adopting the row strategies, who is called the row player,
while the second payoffs the player adopting the column
strategies, who is called the column player.

PD has been the most influential in social sciences since
the later half of the twentieth century. It is discussed
most extensively to reveal the emergence of altruistic be-
haviors in communities consisting of selfish individuals.
According to the classical game theory, either player in

J

PD should adopt strategy D so that he can get more
payoff no matter what his opponent’s strategy is. Profile
(D, D) is the unique Nash equilibrium (NE) of the game,
while profile (C, C) is Pareto Optimal, which is the most
efficient. Hence a dilemma occurs. In CG, the dilemma
occurs because there are two NEs, (C,D) and (D,C).
The players without communicating with each other can-
not decide on which NE to choose. The dilemma in SH
is very different from those in the above two games. SH
has two NEs, (C,C) and (D, D). Obviously, strategy
C is better for both players. PD and CG are discussed
on the assumption that players are rational, on which
there exists no dilemma in SH. However, in this game,
the dilemma can be found in the following sense: If one
cooperates but the other player defects, then the former
gets the worst payoff, while the latter still gets the second
highest payoff. In other words, the dilemma arises from
the fear that the other player might not be rational. We
can transform PD into DG by exchanging strategies C'
with D. DG can be studied in the way PD is. Therefore
we merely consider the first three games.

If a mechanism can change the relations among the
entries in the payoff matrices of the games, the dilem-
mas would be solved. Here we introduce several related
concepts by taking PD as an example. (i) If » > ¢, C
is evolutionary stable strategy (ESS). An infinitely large
population of cooperators cannot be invaded by defec-
tors under deterministic selection dynamics [9]. (ii) If
r+s > t+p, Cis risk-dominant (RD). If both strategies
are ESS, then the risk-dominant strategy has the bigger
basin of attraction. (iii) If » + 2s > t 4+ 2p, C' is advan-
tageous (AD). This concept is important to stochastic
game dynamics in finite populations [49]. (iv) If » > ¢
and s > p, C' dominates D.

The above-mentioned five mechanisms which lead to
the evolution of cooperation are kin selection [13-15], di-
rect reciprocity [16—18], indirect reciprocity [19, 20], net-
work reciprocity [21-23| and group selection [24-26]. All
of them adopt payoff matrix (1), in which only the row
player’s payoffs are listed

C D

C b—c —c . (1)
D b 0

Here, b > ¢ > 0. Matrix (1), which is equal to a simpli-
fied PD with r 4+ s = t + p, corresponds to cooperation in
meaning that a donor pays a cost ¢ for a recipient to get
a benefit b. Nowak [27] summarized up the rules of the
five mechanisms [13-27], as are shown in Table II. Each
rule is displayed as an inequality, in which the benefit-
-to-cost ratio of the altruistic act is greater than some
critical value.
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TABLE II
Five rules for the evolution of cooperation.
Payoff matrix Cooperation is ...
C D ESS RD AD
Kin ‘ Cl(b=0c)(1+m) br—c b1 b1 b1
selection |D b—re 0 c”r c T c” T
Dir‘ect . Cl(b—c)/(1 —w) —c by 1 by 2-w [ by 3-2w
reciprocity |D b 0 € w ¢ w € w
Ind‘irect. C (b—o0) —c(1—q) by 1 by 2-g | b 3-2
reciprocity |D b(1 —q) 0 c q c q c q
Network |G} = (b=c) e bk bk bk
reciprocity | D b—H 0 c c c
GrouP Cl(—c)(m+n) (b—C)m—CnQ>1+£g>1+£g>1+£
selection |D bn 0 c m|ec m|c m

r — genetic relatedness, w — probability of next round,
q — social acquaintanceship, £ — number of neighbors,

n — group size, m — number of groups.

3. Quantization scheme and payoffs
in quantum games

3.1. FEisert et al.’s quantization scheme

Two schemes for the quantum game theory have been
proposed [31, 32]. Our work is based on Eisert et al.’s
scheme, by which PD is discussed, as is shown in Fig. 1.
Each player has a qubit and can manipulate it indepen-
dently. The quantum formulation proceeds by assigning
the possible outcomes of the classical strategies D and C'
to two basis vectors,

|c>=<é>, |D>=<?), 2

which belong to the Hilbert space. At each instance, the
state of the game is described by a vector in the ten-

sor product space which is spanned by the classical game
basis |CC), |CD), |DC) and |DD).

Fig. 1. The setup of a two player quantum game.

At the beginning of the game, the qubits |C) ® |C) go
through an entangling gate J = exp(i’yD ® ﬁ/2), which
is a reversible two-bit gate with v € [0,7/2]. There-
fore, |1) = J|CC) = cos(/2)|CC) + isin(y/2)|DD).
Since the entropy of |1g) is S = — sin®(y/2) Insin?(y/2) —
cos?(y/2) In cos?(v/2), the parameter v can be considered
as a measure for the game’s entanglement. Ua and Up
are the strategy moves available to the players, which
belong to a subset S of quantum unitary 2 x 2 matrices,

i.e., the player’s strategic space is restricted to a two-

-parameter set,
. ip i
0(0,) = (e (3.089/2 _is1n9/2 )7 3)
—sinf/2 e ?cosf/2

with 0 < 0 <7 and 0 < ¢ < 7/2. Having executed their
moves, which leave the game in a state (U4 @ Up)J|CC),
two players forward their qubits for the final measure-
ment, which is accomplished by a gate reversible J.
J = Jt. After the actions of both players and the gate
J, the final state |¢;) = J(Ua ® Up)J|CC) is a superpo-
sition. Measurement will make the final state collapse to
one of classical outcomes and the payoff is returned ac-
cording to the corresponding entries in the matrix. The
row player’s expected payoff is given by

Sa=rPcc +sPcp +tPpc + pPpp, (4)
where P, = [{(oc’|1p¢)|? is the probability that the final
state will collapse into|oc’). The results in two special
instances are shown as follows:

(i) For a separable game with v = 0, there exists a pair
of quantum strategies (D, D),

[)_U(w,())_<_01é>, (5)

which is a NE and yields payoff (p,p).
game behaves as a classical one.
(ii) For a maximally entangled quantum game with

v = /2, a novel NE (Q,Q),

A o i 0

Q:U(Oﬂﬂ—/2):<0 —i>7 (6)
exists, which yields payoff (r,r) and has the property of

being Pareto Optimal. Therefore the dilemma existing
in the classical game is removed.

The quantum
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3.2. Payoffs in non-mazximally entangled quantum games

If a quantum game is not maximally entangled, the quantization process of the game can be depicted in the matrix

as follows:
A Y Py 0 1 0 1
J=e3P®D — ¢ il ® —
I A 10
Therefore,
cos 3
Al A A 0
vy = J16C) = | ¢
isin 7
As

—sin

; 0 . ol o
. . el®a cos 4 sin %4 B cos
_ 5 3
m®%—< e o e
3 3

9}3

o4 fain X
COS 3 0 0 isin 3
0 cos3 —ising 0 T
0 —isind cos? 0
Fein ot
isin 3 0 0 COS 5

e~ %5 cog

(2323
blni
° (93 ) ? (9)

el(Pa+e5) g %A cos 975 cos 3 +isin 94 sin 28 gin 2

2 2 2

—el%4 cos eA sin 28 cos 7+ ie”1%B gin 9—“ cos 22 gin 2

04 © 0y J|CC) = 2

—e!?B gin 9A cos 22 cos 7 +ieida

2

GA 92B 2 : (10)

X
COs B} sin ) sin b}

sin %2 sin ‘93 cos 3 +ie 1(¢A+¢B) cos 9; cos 28 gin 2

2 2

cos(da + ¢p) cos

O

W) = J U4 ® UpJ|CC) =

sm(qSB + ¢ ) cos %4 cos 93 smv + sin %2 sin ¥

0a
sin ¢ sin £ cos 4 sin 7y
sin ¢ 4 cos ‘9“ sin ‘93 siny — cos ¢p sin 9A cos

2 2

4 cos 0—5 +isin(¢a + ¢p) cos %A cos 955 cosy

_ 04 98 _ 94 (923
cosqucos 5+ sin =fF — isin ¢4 cos 5 sin 7 cosy 1)
93 9A 93

— isin ¢p sin =* cos =3* cosy

9A GB

The probabilities that the final state will collapse into the basis vectors of the tensor product space are

Pee = 0052(¢A + ¢B) cos? 205

. . 9A 0B . 9,4 . 93
Pep = | sin¢p sin — cos — siny — cos ¢ 4 cos — sin —

2 2 2

0 6 6 0
Ppe = (Sin¢A coS ?A sin 73 siny — cos ¢ sin 7’4 cos -2

0 0 6 0
Ppp = <Sin(¢3 + ¢p) cos A cos 2 siny + sin -+ sin —=

2 2 2

50 0 0
; cos” — + sin?(¢4 + ép) cos? EA cos? 7B cos? ~,

2 2 2914 . 203 2
+ sin” ¢ 4 cos® — sin® — cos” 7,

2 2

2 0 0
) + sin? ¢ sin? 7’4 cos? ?B cos? 7,

Y. (12)

We can get the payoffs of the non-maximally entangled quantum game by Eqs. (4) and (12).

4. Rule for evolution of cooperation
in quantum games

4.1. Conditions of dilemmas resolving
mn quantum games

It is known by Eqs. (4) and (12) that the payoff of
profile (Q Q) is equal to that of profile (C, C) Here, we
adopt Q as cooperator’s strategy instead of C so that the
dilemmas in the classical game theory can be resolved in
the quantum game theory.

For PD, the modified matrix in the non-maximally en-
tangled quantum game can be obtained

Q D
Q T tsin?y 4+ scosy \. (13)
D tcos?y + ssin?y P

PD is resolved if 7 > t cos® vy 4 ssin® v and p<t sin vy +
scos? 7. In these conditions, a unique NE, (Q, Q), exists,
which is Pareto Optimal. The two inequalities call for

t—r D—s5
.2
sin2y > 1/ : 14
sin® vy max( P— t—s) (14)

which is considered as the condition of PD resolving.
When ¢, r, p and s are equal to 5, 3, 1 and 0 respec-

tively, sin? v is greater than /2/5.
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In the same way, we can get the modified matrix of CG,

Q D
Q T tsin®~y +pcos?y \, (15)
D tcos2’y+psin2’y s

and the condition of escaping from the dilemma of CG,

. 9 t—r
> 16
i’y >\ (16)

as well as the modified matrix of SH,

Q D
Q t rsin?y + scos?y \, (17)
D ?"COSQ’y-I-SSinQ’y p
and the condition of escaping from the dilemma of SH,
sin?y > /22 (18)
r—s

The NEs of the three quantum games are (Q7 Q) when
their conditions are fulfilled.

4.2. Rule for the evolution of cooperation
mn quantum games

In order to get a rule for the evolution of cooperation in
quantum games, which can be compared with Nowak’s,
the modified matrix of matrix (1) in the non-maximally
entangled quantum game is provided,

Q D
Q b—c bsin® vy — ccos?y \. (19)

D beos?y — esin?y 0
For this payoff matrix, @ is ESS, RD and AD if b/c >
coth? 7. In this condition, @ dominates D, and pro-
file (Q,Q) is Pareto Optimal. The cooperation be-
tween two players is realized. Therefore the condition,

b/c > coth®~, is considered as the rule for evolution of
cooperation in quantum games.

5. Conclusion

The quantum game theory provides an effective way
to realize cooperation. It will be valued more and more
with the development of quantum information theory. In
this paper, not only the conditions of three dilemmas
resolving in non-maximally entangled quantum games
are acquired, but also the rule for the evolution of co-
operation in the quantum games is gotten, which corre-
sponds to the rules in the classical game theory. The rule,
b/c > coth? v, ensures that strategy () dominates strat-
egy D so that cooperation can also be realized in non-
-maximally entangled quantum games. The rule, which
can no more be replaced by each of the five rules in
Ref. [27] than the mechanics of quantum game can by the
one of the classical game, makes the mechanics of coop-
eration more substantial. Although one may claim that
the quantum PD is not a genuine quantum game [38],
the rule obtained in this paper is expected to offer a way
of resolving dilemmas in decision science or economics

and to serve as a tool of investigating the cooperation
behaviors in the games on the molecular level, such as
replication of DNA and synthesis of proteins.

As a referee pointed out, it is very interesting to extend
the rule for the evolution of cooperation to multi-player
games, for cooperation is more and more important in
games involving many players. This issue needs some
more preparations in mathematics, which cannot be re-
alized in this paper. It will be addressed in our future
work.
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