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The phase diagrams of spin-1/2 Ising model on a two-layer Bethe lattice with antiferromagnetic interactions
for each layer and either antiferromagnetic or ferromagnetic interaction between the layers are investigated by
using the pairwise approach for given values of coordination number q. The exact expressions of the order-
-parameters, response functions and free energy are obtained in terms of the recursion relations. The ground-state
phase diagrams are calculated for given system parameters of the model. In the guidance of the ground-state
phase diagrams, the temperature dependent phase diagrams of the model are also studied in detail for given
coordination numbers q = 3, 4 and 6. It was found that the system presents only second-order phase transitions
with different thermal behaviors for all values of q. In addition, two Néel temperatures, TN, are found for q = 6 only.

PACS numbers: 05.50.+q, 68.35.Rh, 64.60.Cn

1. Introduction

In the recent years, the ferromagnetic (FM) or antifer-
romagnetic (AFM) materials or their combinations were
simulated as multi-layered systems to simulate superlat-
tices, thin films etc. and their magnetic behaviors were
investigated with many respects. The Ising or Heisenberg
spins were considered in modeling of these structures.

The symmetric two-layer Ising model was studied by
the corner transfer matrix renormalization group method
to calculate the critical points and critical exponents [1].
The Monte Carlo (MC) simulation was used to study the
behavior of an Ising model consisting of two FM layers
with different interaction constants coupled weakly to-
gether [2]. The role of the interlayer coupling between
CuO2 planes on bilayer-group high-Tc superconductors
was studied within a simple randomly decorated bilayer
Ising model and a Bethe-lattice approach [3]. A two-
-layer Ising system was studied by means of a mean field
theory (MFT), a generalized MFT, a scaling approach
and high-temperature series expansions [4]. The criti-
cal temperature for layered Ising model on the sc lattice
was calculated using the transfer-matrix version of a MF
approximation [5]. The critical temperature in the two-
-layered Ising model was precisely calculated by using the
transfer matrix MF approximation [6]. The two-layered
spin-3/2 Ising model was studied by using the interfa-
cial approximation for a system with competing antifer-
romagnetic and ferromagnetic interactions on a square
lattice [7]. The effect of a variable surface transverse
magnetic field on the order–disorder layering transitions
of an Ising model was investigated using the MFT and

finite cluster approximation [8]. The multilayer spin-1/2
square lattice Heisenberg antiferromagnet with up to six
layers was studied using series expansions [9]. A sim-
ple criterion which allows us for the determination of the
order–disorder critical temperatures was found and pre-
dicted that βc = 0.2656 for the two coupled layers of
Ising spins [10]. The MC simulations were used to study
the phase transitions on coupled anisotropic FM/AFM
films with classical Heisenberg spins [11]. A variety of
the aspects of a bilayer system of Ising spins was studied
including accurate estimates of the critical temperature
for FM interactions, scaling of the critical temperature
when the interlayer interaction goes to zero, and approx-
imations of the phase diagrams for the case when AFM
interlayer interactions are present including location of
the tricritical point [12]. A magnetic impurity in two
different S = 1/2 Heisenberg bilayer antiferromagnets
at their respective critical interlayer couplings separating
Néel and disordered ground states (GSs) was considered
and the impurity susceptibility was calculated by using a
quantum MC method [13]. The quantum MC data was
analyzed in the vicinity of the quantum transition be-
tween a Néel state and a quantum paramagnet in a two-
-layer, square spin-1/2 Heisenberg antiferromagnet [14].
A two-layer Heisenberg antiferromagnet which can be ei-
ther in the Néel-ordered or in the disordered phase at
T = 0, depending on the ratio of the intra-layer and inter-
-layer exchange constants, was investigated [15]. The
correlation length and the static structure factor for bi-
layer antiferromagnets, such as YBa2Cu3O6, were calcu-
lated using field theoretical and numerical methods [16].
High-temperature, Ising and dimer expansions were de-
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veloped for studying the two-layer spin-1/2 square-lattice
Heisenberg antiferromagnet [17]. The antiferromagnetic
order–disorder transition occurring at T = 0 in a two-
-layer quantum Heisenberg antiferromagnet was studied
as the interplane coupling was increased [18].

The similar approaches are also employed for the ex-
amination of the superlattices; a magnetic superlattice
was examined within the framework of the the effective
field theory (EFT) with correlations for arbitrary number
of layers [19], the magnetic superlattice consisting of two
different FM was examined in a transverse Ising model
using the EFT that accounts for the self-spin correla-
tion function [20], infinite FM AB1AB2-superlattice and
A(na)B(nb) sandwich structures, with constituents com-
posed of various ferromagnets with equal thickness, were
investigated using an Ising model in a linear cluster ap-
proximation [21]. The fcc superlattices of equal-thickness
Ni and Fe layers were modeled with a short range interac-
tion Ising model using parameters determined from a pre-
vious study of homogeneous NicFe1−c alloys [22] and an
Ising model was presented for a simple cubic-type struc-
ture to determine the magnetic properties for superlat-
tices of periodic Ak(ApB1−p)1Bh formula consisting of k
layers of spin-1/2 A ions, h layers of spin-1/2 B ions and a
single layer disordered alloy interfaces between them [23].

It should be mentioned that the two-layer Ising mod-
els are also used to simulate thin films: The elemen-
tary excitations for a uniaxial AFM film with an external
magnetic field H applied along the easy axes was stud-
ied by using a microscopic approach [24]. A vectorized
multispin-coding MC method was used to determine the
behavior of the surface-layer magnetization at the bulk
transition in a simple cubic Ising film with strongly en-
hanced surface coupling [25]. Within the framework of
the EFT, the phase transitions of an Ising film in a trans-
verse field were investigated [26]. The effect of a random
field within the bimodal distribution on the layering tran-
sitions in a spin-1/2 Ising thin film was investigated by
using MC simulations [27]. The influence of corrugation
and disorder at the surface on the critical behavior of a
FM Ising film was investigated using the MFT and the
cluster approximation [28]. The critical behavior of both
semi-infinite spin-1/2 and spin-1/2 Ising film in a ran-
dom transverse surface field has been studied within the
EFT [29]. The FM multilayers consisting of two materi-
als in a sandwich structure (ABA) using an EFT with a
probability distribution technique that accounts for the
self-correlation function [30]. The finite size transfer ma-
trix method and MFT were used to study the layering
transitions for an Ising model under uniform and vari-
able magnetic field in a film of finite thickness limited by
a single substrate [31].

Let us note that the fictitious lattices were also em-
ployed in studying the multilayered structures. Thus, a
two-layer Bethe lattice for an Ising model was studied by
using an iteration technique [32], the Ising crossover be-
tween the multilayer and single layer Sierpinski gaskets
— a fractal lattice — was used to investigate the critical

behavior of an Ising model [33] and the behavior of the
Ising thin films through the use of layered Bethe lattices
and Husimi trees were studied [34].

In this work in order to simulate a two-layer Ising
model, two Bethe lattices each with a branching ratio
of q Ising spins were placed parallel to each other with
an exact match as seen in Fig. 1. The case for the AFM
type intralayer and either AFM or FM type interlayer
bilinear interactions are assumed. The problem is ap-
proached by the use of the exact recursion relations in a
pairwise approximation [32] by dividing the two layered
Bethe lattice into the sublattices A and B. Thus, the GS
phase diagrams (PDs) and the temperature dependent
PDs of the model are obtained in detail.

Fig. 1. The two-layer Bethe lattice of coordination
number q = 3.0. G1 and G2 refer to the upper and
lower layers containing the spins labeled as Si and σi′ ,
respectively.

The rest of the work is set up as follows. In Sect. 2,
the two-layer Ising model is introduced and then the for-
mulations of the order-parameters, free energy and the
response functions are obtained exactly in terms of the
recursion relations. The illustrations and discussions of
the PDs are presented in Sect. 3. Finally, the last section
is a brief summary and discussions.

2. The model and formulation

We consider two identical layers of the Bethe lattices
G1 and G2 which are placed parallel to each other with an
exact match forming the two-layer Bethe lattice as seen in
Fig. 1. The Ising model is simulated on a two-layer Bethe
lattice and a pairwise approach is employed for its inves-
tigation. In this approach, an adjacent nearest neighbor
(NN) pair is picked from deep inside the two-layer Bethe
lattice, called as the central pair, which forms the first-
-generation spins. This central pair is connected to q NN
spin pairs (i.e. q is the coordination number) which form
the second-generation spins. Each pair of the second-
-generation is joined to q − 1 NNs. Therefore, in total it
has q(q− 1) NNs which form the third-generation and so
on to infinity. As a result each spin has (q +1) NN spins,
i.e. q NNs from its layer and one from the adjacent layer.
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Thus the appropriate Hamiltonian of such a two-layer
Bethe lattice model in the existence of external magnetic
field may be given as

H = −J1

∑

〈ij〉
SiSj − J2

∑

〈i′j′〉
σi′σj′ − J3

∑

〈ii′〉
Siσi′

−H1

∑

i

Si −H2

∑

i′
σi′ . (1)

Si and σi′ take the values ±1/2 and refer to the spins
in layers G1 and G2, respectively. J1 and J2 are the
intralayer bilinear interactions of the q NN spins of the
layers. Thus, the first and second summations are over
all NN sites of G1 and G2, respectively. J3 is the inter-
layer bilinear interaction of adjacent NN spins between
the layers, therefore, the third summation runs over all
the adjacent neighboring sites of G1 and G2. The layers
are assumed to be under the influence of external mag-
netic fields H1 and H2, thus the fourth and final sums
run over all the lattice sites in each layer.

The partition function which is given by definition as

Z =
∑

All Config.

e−βH =
∑

Spc

P (Spc), (2)

where P (Spc) is the unnormalized probability distribu-
tion, β = 1/kT is the inverse temperature and k is the
Boltzmann constant and the summation runs over all the
spin configurations (Spc). Beginning from the central
pair on the lattice made up with q separate branches
connecting each pair of spins, one follows only one of the
branches out of q, therefore, for the full formulation we
have to define the partition function for each of these
separate branches called as gn(S, σ). Each spin Si and
spin σi′ can take the values ±1/2, thus we have to define
four gn(S, σ) functions for 22 = 4 configurations for each
pair of spins. As a result in this pairwise approach, 3 ex-
act recursion relations are defined as the ratios of these
partition functions of the separate branches as

Xn =
gn(1/2, 1/2)

gn(−1/2,−1/2)
, Yn =

gn(1/2,−1/2)
gn(−1/2,−1/2)

,

Zn =
gn(−1/2, 1/2)

gn(−1/2,−1/2)
. (3)

Each recursion relation is a function of the recursion re-
lations for the NN shell with n− 1, therefore in order to
obtain their numerical values for given system parameters
an iteration method may be employed. Meanwhile, the
choice of the recursion relations, i.e. the ratios of these
gn(S, σ) functions, are completely arbitrary. In the ther-
modynamic limit (n →∞), they determine the states of
the system, and thus they may be called as the equations
of state.

The magnetizations M1 and M2 of the layers G1 and
G2 are defined as

M1 = 〈S〉 and M2 = 〈σ〉, (4)
where 〈. . .〉 denotes the usual thermal average. They are
calculated in terms of the recursion relations as

M1 = [eβ(+0.25J3+0.5H1+0.5H2)Xq
n

+eβ(−0.25J3+0.5H1−0.5H2)Y q
n

− eβ(−0.25J3−0.5H1+0.5H2)Zq
n

− eβ(+0.25J3−0.5H1−0.5H2)]/2Z (5)
and

M2 = [eβ(+0.25J3+0.5H1+0.5H2)Xq
n

− eβ(−0.25J3+0.5H1−0.5H2)Y q
n

+eβ(−0.25J3−0.5H1+0.5H2)Zq
n

− eβ(+0.25J3−0.5H1−0.5H2)]/2Z, (6)
where
Z = eβ(0.25J3+0.5H1+0.5H2)Xq

n

+eβ(−0.25J3+0.5H1−0.5H2)Y q
n

+eβ(−0.25J3−0.5H1+0.5H2)Zq
n

+eβ(0.25J3−0.5H1−0.5H2). (7)
The two response functions are the susceptibility and

the specific heat. The constant magnetic field suscepti-
bilities of the layers G1 and G2 are given by the definition
as

χ1 = lim
H1→H

∂M1

∂H1
and χ2 = lim

H2→H

∂M2

∂H2
(8)

and the total susceptibility of the bilayer is just the sum
of the susceptibilities of the layers

χTotal = χ1 + χ2. (9)
In order to obtain the specific heat, the free energy in

terms of the recursion relations is needed. Therefore, the
free energy of the bilayer Bethe lattice is given as

−βF =
q

2
logW+

2− q

2
logZ (10)

and which is used to find the places of the first-order
phase transition temperatures, if any exist, and the sta-
ble solutions and where
W = eβ[0.25(−J1−J2+J3)+0.5(H1+H2)]Xq−1

n

+eβ[0.25(−J1+J2−J3)+0.5(H1−H2)]Y q−1
n

+eβ[0.25(J1−J2−J3)+0.5(−H1+H2)]Zq−1
n

+eβ[0.25(J1+J2+J3)−0.5(H1+H2)]. (11)
The specific heat at constant magnetic fields is defined as

CH = T

(
∂S

∂T

)

H

= −T

(
∂2F

∂T 2

)

H

, (12)

where H refers to H1 and H2 and S is the entropy. To
be consistent with the variables used in this calculations,
one can write the specific heat by using a chain rule as

C/k = −β′
[
2β′

∂(F/J1)
∂β′

+ β′2
∂2(F/J1)

∂β′2

]
, (13)

which is not as simple as it is seen, since it contains the
first- and second-partial derivatives of the recursion re-
lations with respect to β′ = βJ1, therefore, the explicit
equation is too long to be given here.
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So far we have only obtained the formulation for gen-
eral interactions, but for the AFM interactions for the
layers, i.e. J1 < 0 and J2 < 0, we have to partition each
layer into sublattices A and B. Hence, the recursion re-
lations in a pairwise approach for the two-layer in terms
of the sublattices A and B may be written as follows:

{Xn, Yn, Zn} → {XA
n , Y A

n , ZA
n } for even n,

{XB
n , Y B

n , ZB
n } for odd n.

(14)

The notable point of this approach is that non-
-staggered phases are described by the single fixed points
{Xn, Yn, Zn} → {X,Y, Z}, while the staggered phases
appear as two-cycle double points as indicated above.

In addition, the sublattice magnetizations for the lay-
ers G1 and G2, since each spin only interacts with its NNs
from its own layer and a NN from the adjacent layer with
the same sublattice, i.e. A or B, could be written as

{M1,2} → {M1A,M2A} for even n,

{M1B,M2B} for odd n.
(15)

The free energies of the sublattices are of the form
{F (Xn, Yn, Zn)} →
{F (XA

n , Y A
n , ZA

n )} for even n,

{F (XB
n , Y B

n , ZB
n )} for odd n,

(16)

and then the specific heat is to be defined accordingly,
that is

{C(Xn, Yn, Zn)} →
{C(XA

n , Y A
n , ZA

n )} for even n,

{C(XB
n , Y B

n , ZB
n )} for odd n,

(17)

and finally the susceptibility is given as
{χ(Xn, Yn, Zn)} →

{χ1(XA
n , Y A

n , ZA
n )

+χ2(XA
n , Y A

n , ZA
n )} for even n,

{χ1(XB
n , Y B

n , ZB
n )

+χ2(XB
n , Y B

n , ZB
n )} for odd n.

(18)

Let us note also that in order to use as a guide in
calculating the temperature dependent PDs, first we
obtain the GS PDs on the (J2/|J1|, J3/q|J1|) planes
for given H/q|J1|, i.e. H1 = H2 = H, and on the
(H/q|J1|, J3/q|J1|) for given J2/|J1|. The GS energies
may be obtained from Eq. (1) in units of J1 by rewriting
it as

E

q|J1| = −
∑

〈plaq〉

[
J1

|J1|SiSj +
J2

|J1|σi′σj′

+
J3

q|J1| (Siσi′ + Sjσj′)

+
H

q|J1| (Si + Sj + σi′ + σj′)
]
, (19)

where the summation is over all the central plaquette and
each plaquette consists of four NN pairs of the two-layer
system with one pair 〈ij〉 from layer G1, one pair 〈i′j′〉
from layer G2, and two pairs 〈ii′〉 and 〈jj′〉 connecting
layers G1 and G2 between the adjacent spins only. The

GS PDs are obtained by comparing the values of the en-
ergy for different spin configurations and then the GS
configurations are the ones with the lowest energy for
given values of the system parameters. Let us note also
that the coordination number q is hidden in the GS en-
ergy equations, therefore, the GS PDs are obtained for
general q values. As a result, we have obtained the fol-
lowing five different types of GS configurations as given
in Table.

TABLE
The GS configurations.

I
+1/2 +1/2
+1/2 +1/2

II
±1/2 ∓1/2
∓1/2 ±1/2 III

+1/2 +1/2
∓1/2 ±1/2

IV
±1/2 ∓1/2
+1/2 +1/2

V
∓1/2 ±1/2
∓1/2 ±1/2

While the phases I and II are the FM and AFM phases,
the phases III and IV are the surface FM phases with
layer G2 or G1 having zero magnetizations separately,
respectively. The phase V is the mixed phase, i.e. the
interlayer interaction is FM type but the intralayer in-
teractions are AFM type.

The nature of the phase transitions is determined from
the thermal behaviors of the magnetizations, free energy
and response functions, thus the next section is devoted
to the illustrations and discussions of the GS and tem-
perature dependent PDs of the model.

3. Ground state and temperature dependent
phase diagrams

In this section we first illustrate the distinct GS phase
diagrams and then using the thermal variations of mag-
netizations, response functions and free energy together
with the guidance of the GS PDs the distinct tempera-
ture dependent PDs are obtained and exhibited. The GS
PDs are obtained for general q and where the multiphase
lines separate the GS configurations as given in Table.
The temperature dependent PDs are obtained according
to GS PDs by taking horizontal or perpendicular lines
cutting through the different GS configurations. They
are obtained for q = 3, 4 and 6 and their phase transition
lines are labeled with gray solid, dashed and black solid
lines, respectively. The arrows indicate the phase sepa-
ration points according to the GS PDs. Meanwhile, we
only consider the positive external magnetic fields since
we know that M(−H) = −M(H).

The first GS PD is obtained on the (J2/|J1|, J3/q|J1|)
plane for H/q|J1| = 0.5, see Fig. 2a, where the phases
(V, I), (II, IV, I), (II, IV) and (II, V) are separated
with the multiphase lines. The temperature dependent
PDs are obtained accordingly for H/q|J1| = 0.5 on the
(J3/|J1|, kT/|J1|) planes for J2/|J1| = −4.0 and −0.5
which cuts through the phases (II, V) and (II, IV, I) and
on the (J2/|J1|, kT/|J1|) planes for J3/q|J1| = 2.0 and
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Fig. 2. (a) The GS PD on the (J2/|J1/, J3/q|J1|)
planes for H/q|J1| = 0.5. The temperature dependent
PDs on the (J3/|J1|, kT/|J1|) planes for H/q|J1| = 0.5
with q = 3, 4, 6; (b) J2/|J1| = −4.0 and (c) J2/|J1| =
−0.5, and on the (J2/|J1|, kT/|J1|) planes for H/q|J1| =
0.5 with q = 3, 4 and 6; (d) J3/q|J1| = 2.0 and
(e) J3/q|J1| = −0.5.

−0.5 which cuts through the phases (V, I) and (II, IV)
and which are displayed in Figs. 2b–e, respectively. In
Fig. 2b, the TN-lines start from constant temperatures
at higher negative values of J3/|J1| and which are seen
at higher kT/|J1| with higher q. As J3/|J1| increases,
they reach their minima around J3/|J1| = 0 and as it
increases further they again become constant at some
temperatures at higher positive J3/|J1|. The left wings
are seen at higher temperature than the right ones, since
J1 < 0, J2 < 0 and J3 < 0 all favors the AFM phase II but
while J1 < 0 and J2 < 0 favor AFM phases, J3 > 0 favor
FM phase, so phase II is more resistive to temperature
than the phase V. The TN-lines do not terminate since
both phases II and V are AFM type. Figure 2c shows
that the TN-lines start from constant temperatures at
higher negative values of J3/|J1| and as J3/|J1| increases
their temperatures decrease and all go to zero tempera-
ture at zero J3/|J1|. The reentrant behavior is exhibited
by the TN-line for q = 6 because of the existence of two
TN’s. The TN-lines terminate in the phase region I, since
for the FM phases when there is external magnetic field
acting on the layers no second-order phase transitions are
seen. Figure 2d is similar to Fig. 2c, but now the TN-lines
increase towards higher temperatures as J2/|J1| becomes
more negative and all the TN-lines go to zero tempera-
ture before J2/|J1| = 0. Again the reentrant behavior is
seen for q = 6. The left hand side of Fig. 2e is similar to
Fig. 2d, but now the TN-lines cannot go to zero. The up-
per layer is AFM type and the lower layer is FM type for
phase IV, thus we always see TN’s because of the upper
layer and the lines of which are at constant temperatures
for all positive values of J2/|J1|.

The next GS PD, Fig. 3a, is obtained on the
(J2/|J1|, J3/q|J1|) plane for H/q|J1| = 1.0, and for which
phase III is also seen in addition to other four phases.
The temperature dependent PDs may be obtained
along the lines cutting through the phases (II, III, V),
(II, III, I), (III, I), (V, I), (II, IV) and (II, IV, I). We
consider first three cases and present their PDs in
Figs. 3b–d, respectively. Figure 3b is obtained for
J2/|J1| = −3.5 on the (J3/|J1|, kT/|J1|) plane. The
TN-lines start from constant temperatures at higher neg-
ative J3/|J1| and as J3/|J1| increases towards zero the
TN-lines decrease and they again become constant at
some temperatures for positive J3/|J1|. This figure is ac-
tually similar to Fig. 2b. Figure 3c is similar to Fig. 2c,
but now the TN-lines go to zero temperature at lower
positive values of J3/|J1| for lower q. The last PD is ob-
tained on the (J2/|J1|, kT/|J1|) plane for J3/q|J1| = 0.5
and it is very similar to Fig. 2d, but its TN’s are seen at
higher temperatures. Let us note also that the TN-lines
exhibit reentrant behavior for q = 6 in the last two
PDs. We have also obtained the temperature depen-
dent PDs for (II, IV, I), (V, I) and (II, IV) phase tran-
sitions according to GS PD (Fig. 3a) but we do not il-
lustrate them in here. The first one is obtained on the
(J3/|J1|, kT/|J1|) plane for J2/|J1| = −0.7 and is similar
to Fig. 2c, but the TN-lines go to zero temperature at
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Fig. 3. (a) The GS PD on the (J2/|J1/, J3/q|J1|)
planes for H/q|J1| = 1.0. The temperature depen-
dent PDs on the (J3/|J1|, kT/|J1|) planes for H/q|J1| =
1.0 with q = 3, 4 and 6; (b) J2/|J1| = −3.5 and
(c) J2/|J1| = −2.5, and (d) on the (J2/|J1|, kT/|J1|)
plane for H/q|J1| = 1.0 with q = 3, 4 and 6 for
J3/q|J1| = 0.5.

lower J3/|J1| for higher q. The next two are obtained
on the (J2/|J1|, kT/|J1|). First one for J3/q|J1| = 3.0
is similar to Fig. 2d, but the end of the TN-lines moves
towards left in comparison. Last one for J3/q|J1| = −1.5
is similar to Fig. 2e, but its TN’s are higher.

Our next distinct GS PD, Fig. 4a, is obtained on the
(H/q|J1|, J3/q|J1|) plane for J2/|J1| = −0.5 and which
shows that (V, I), (V, IV, I), (II, IV, V), (II, IV, I) and
(II, V) phase transitions are possible. We have not pre-
sented the temperature dependent PDs for the first three

Fig. 4. (a) The GS PD on the (H/q|J1/, J3/q|J1|)
planes for J2/|J1| = −0.5. The temperature depen-
dent PDs on the (H/|J1|, kT/|J1|) planes for J2/|J1| =
−0.5 with q = 3, 4 and 6; (b) J3/q|J1| = 2.0 and
(c) J3/q|J1| = 0.05, and (d) on the (J3/|J1|, kT/|J1|)
plane for J2/|J1| = −0.5 with q = 3, 4 and 6 for
H/q|J1| = 0.35.

phase transitions (V, I), (V, IV, I) and (II, IV, V) before.
Thus the first two are obtained on the (H/|J1|, kT/|J1|)
plane for J3/q|J1| = 2.0 and 0.05 and presented in
Figs. 4b and c, respectively. The TN-lines start from
higher temperatures for higher q and as H/|J1| increases
their temperatures decrease and they go to zero tem-
perature at lower H/|J1| for lower q for both of the
PDs. The last one is obtained for H/q|J1| = 0.35 on
the (J3/|J1|, kT/|J1|) plane. The TN-lines start from
higher temperatures for higher q in phase region II and as
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Fig. 5. (a) The GS PDs on the (H/q|J1/, J3/q|J1|)
planes for J2/|J1| = −3.0 and in the inset for
J2/|J1| = −1.0. The temperature dependent PDs on the
(H/|J1|, kT/|J1|) planes for J2/|J1| = −3.0 with q = 3,
4 and 6; (b) J3/q|J1| = 0.5 and (c) J3/q|J1| = −0.5.

J3/|J1| increases their TN’s decrease until J3/|J1| ' 0.0
about phase IV and as J3/|J1| increases further TN-lines
become constant again in phase region V. Since we have
already presented the behaviors of the TN-lines for the
rest of the transitions, instead of giving their illustra-
tions we just give some comparisons. The first one with
(II, IV, I) on the (H/|J1|, kT/|J1|) plane for J3/q|J1| =
−2.0 is similar to Fig. 2c and its TN-lines end at lower
H/|J1| for lower q. The next two are for H/q|J1| = 0.15
and 2.0 on the (J3/|J1|, kT/|J1|) plane corresponding
to the phase transitions (II, V) and (II, IV, I), respec-
tively. The first one is similar to Fig. 2b but its TN-lines
are at lower temperatures and the concavities are much
deeper. And the last one is similar to Fig. 2c, however
the TN-lines go to zero temperature at lower J3/|J1| for
higher q.

The last GS PDs, Fig. 5a, are obtained on the
(H/q|J1|, J3/q|J1|) planes for J2/|J1| = −3.0 and in the
inset J2/|J1| = −1.0. The inset shows that there are only
three configurations, i.e. I, II and V, but phase III also lies
along the multiphase line separating the phases I and II.
In the main figure it is clear that for J2/|J1| = −3.0,

the phase III is actually contained in a region separating
the phases I and II. Thus, Fig. 5b and c are obtained on
the (H/|J1|, kT/|J1|) planes for J3/q|J1| = 0.5 and −0.5,
corresponding to the phase transitions (V, III, I) and
(II, III, I), respectively. The behaviors of the TN-lines
are similar for both cases, i.e. they both start from higher
temperatures for higher q for H/|J1| = 0.0 and go to
zero temperature at lower H/|J1| for lower q. The reen-
trant behavior is also seen for q = 6 only. We have also
calculated the PDs for the rest of the phase transitions
according to Fig. 5a. We have obtained the PD on the
(H/|J1|, kT/|J1|) plane for J3/q|J1| = 3.0 and found that
it only differs with higher TN values in comparison with
Fig. 4b. The last PDs that we have obtained on the
(J3/|J1|, kT/|J1|) planes for H/q|J1| = 0.25, 0.75 and 2.0
for the transitions corresponding to (II, V), (II, III, V)
and (II, III, I), respectively. The first one is similar to
Fig. 2b, but its TN values are lower. The next one looks
alike with Fig. 3b again with lower TN temperatures. And
the last one is similar to Fig. 3c, but now the TN-lines
go to zero temperature at lower J3/|J1| for higher q. In
concluding the discussion of the PDs we should say that
we have obtained all the possible distinct GS PDs and
according to them we have obtained the distinct temper-
ature dependent PDs corresponding to different phase
transitions.

4. A brief summary and conclusion

As a summary we have studied the statistical mechan-
ics of the Ising model on a two-layer Bethe lattice with
AFM interactions for each layer and either AFM or FM
interaction between the layers by using the pairwise ap-
proach for given values of coordination number q. The
order-parameters, response functions and free energy are
obtained in terms of the exact recursion relations in a
pairwise approach. In the guidance of the GS PDs, the
temperature dependent PDs of the model are also studied
in detail for given coordination numbers q = 3, 4 and 6.
It was found that the system presents only second-order
phase transitions with different thermal behaviors for all
values of q. In addition, two Néel temperatures, TN, are
found for q = 6 only.

Our found results display all the general characteris-
tics of the spin-1/2 Ising model as given in detail in the
previous section. To end this we mention that the model
with AFM intralayer and with AFM or FM interlayer has
not been studied, thus no comparison is possible.
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