
Vol. 115 (2009) ACTA PHYSICA POLONICA A No. 5

Formula for Energy Loss in Soft Magnetic Materials

and Scaling

K. Sokalski and J. SzczygÃlowski

Faculty of Electrical Engineering, Technical University of Czȩstochowa
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Basing on scale invariance of considered system an improvement of the Bertotti formula for energy loss in soft
magnetic materials has been achieved. Assumptions of the Bertotti theory were discussed and criticized. As an
alternative to this theory a new approach basing on the scale invariance of complex systems has been presented.
The generalized description of energy loss has been recently postulated by us in the form of the homogeneous
function in a general sense which leads to a series expansion for the energy loss. On the basis of measurement
data it has been proved that only two first terms of the series are relevant. New measurements of the energy loss
in soft magnetic materials have been performed which confirms the scaling theory. The obtained formula enables
very simple description of the energy loss in soft magnetic materials, taking into considerations wide ranges of
frequency and magnetic induction. The revealed data collapse of energy loss enables comparison of energy losses
data taken by different methods. This phenomenon also supplies new criterion for correctness of empirical data.

PACS numbers: 75.50.−y, 89.75.Da

1. Introduction

Energy loss in soft magnetic material (SMM), sub-
jected to an alternating magnetic field in the range of
low and medium frequencies, is the result of eddy cur-
rents generated in the material, which is characterized
by its specific conductivity. Recently, we have presented
an approach to the energy loss in SMM basing on scaling
theory [1]. The achieved agreement between experimen-
tal data and this theory suggests the extension of per-
formed investigations into the following directions: crit-
icism of the flaws of the current approach to the energy
loss in SMM [2–4], discussion of the background of the
scaling in SMM, confirmation of the scaling in SMM by
the new measurements.

Nowadays, a number of phenomena occurring in dif-
ferent spatial scales in the material is recognized, which
can be accounted for the source of induced eddy cur-
rents. Eddy currents may be induced on microscale due
to the Barkhausen jumps, which results in a theoretical
dependence Phys ∝ fBα

m, where f is frequency of mag-
netizing field, Bm is maximum magnetic induction and
α is constant, unique for a specific material [5, 2], on
the intermediate scale i.e. around moving domain walls
Pexc ∝ (fBm)3/2 [2, 3], as well as on macroscale, covering
the whole material volume — Pclas ∝ (fBm)2 [5, 2].

The contemporary approach to energy loss phe-
nomenon in soft magnetic materials assumes that the
total loss Ptot is the sum of described above contribu-
tions [2–4]:

Ptot = C1fBα
m + C2(fBm)2 + C3(fBm)3/2, (1)

where C1, C2, C3 are constants. The approach to en-
ergy loss, which assumes their additive character, allows

for their separation and consequently for the independent
analysis of the obtained components in different scales.
However, the results obtained in the case of modern ma-
terials of amorphous and microcrystalline structure re-
veal discrepancies between the theoretical and experi-
mental values [6, 7]. In the seventies of the past century
the aforementioned approach to energy loss was criti-
cized as being oversimplified. It was pointed out that
the energy loss phenomenon ought to be considered as a
whole [6]. This might suggest that the discrepancy be-
tween theory and experiment and the separation in the
formula (1) are related.

The main aim of this work is to confirm that the total
energy loss in soft magnetic materials Ptot obeys the scal-
ing law (9) and to discuss its relation to the Bertotti for-
mula (1). All conclusions of this paper have been derived
from measurements of total energy loss, carried out for
the ten samples of soft magnetic materials, which exhibit
diverse internal structure — from crystalline to amor-
phous and nanocrystalline. Measurements for the seven
samples have been published previously in [1], whereas
here we confirm obtained results by the new measure-
ments.

2. Simplifying assumptions
for the Bertotti approach

In order to find out whether the discrepancy and the
separation are correlated one should reconsider ab initio
the source of separation in (1). Following this line we
focused our attention on the formula for the total eddy
current density j(r, t) being a result of the Barkhausen
jumps at different random points ri and at different ran-
dom times ti, presented in [2]:

(920)
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j(r, t) =
N∑

i=1

j(r, t; ri, ti), (2)

where j(r, t; ri, ti) is the contribution to j(r, t) resulting
from the Barkhausen jump at (ri, ti). We find this for-
mula to be extremely rough approximation which does
not correlate events at (r, t) and at (ri, ti) by the elec-
tromagnetic wave propagation. It has been argued in [2]
that since j(r, t; ri, ti) are solutions of the Maxwell equa-
tions, which are linear, then the superposition (2) holds.

We prove that j, H, and M obey the system of quasi-
-linear partial differential equations we eliminated the
electric field E and the electric induction D from the
Maxwell equations. In order to describe the dynamics of
M we attach the Brown equation (instead of the Brown
equation one can attach any other appropriate model of
the magnetization’s dynamics). However, the set of equa-
tions describing the current density in the soft magnetic
material is not linear

1
γ
4j − µ0ε

γ

∂2

∂t2
j − µ0

∂

∂t
j = ∇× ∂

∂t
M , (3)

−4H + µ0ε
∂2

∂t2
H + ε

∂2

∂t2
M = ∇× j, (4)

∂

∂t
ρe +∇ · j = 0, (5)

∇ · (µ0H + M) = 0, (6)
∂

∂t
M = gµ0H ×M + K4M ×M , (7)

where H — magnetic field strength, ε — dielectric per-
meability, j — current density vector, M — magneti-
zation vector, ρe — charge density, g — electron gyro-
magnetic ratio, K — exchange integral and γ — specific
conductivity.

Equation (7) induces the strong nonlinearity in (3) and
therefore the system (3)–(7) is not linear and no linear
superposition (2) can hold except a regime of weak M ,
where (7) becomes linear. Moreover, it has been said that
(2) is valid in the regime of immediate reactions which
was equivalent to the approximation of infinite light ve-
locity and contradicted the Maxwell theory.

In order to improve (1) we assume that the considered
system is a complex one and it exhibits scale invariance
features. Its complexity arises from the nonlinear relation
between H and M and makes the system very hard to
investigate. Therefore, instead of detailed analysis basing
on the Maxwell equations and the Eqs. (3)–(7) resulting
from, we propose to apply mathematical tools basing on
the global properties of the system. Just the scale invari-
ance is global and can be expressed by the homogeneity
of the functions describing the energy loss in SMM.

3. Soft magnetic material as a complex system

The concept of scale invariance embodies the idea that
a comprehensive description of a material requires an
understanding over many time and length scales. It is
the pillar of theoretical models for the complex systems
which have been tested for many years in critical phe-
nomena and turbulence in inertial range. A heuristic

argument could be developed into a possible coherent
approach to understanding the ubiquity of scale invari-
ance in a wide range of complex systems. By the scale
invariance we mean a hierarchical organization that re-
sults as homogeneity in a generalized sense of functions
describing properties of considered complex system.

The hierarchical organization in soft magnetic mate-
rials concerns the eddy currents distribution. This dis-
tribution is determined by the boundary conditions, the
domain structure, the domain wall movements and the
Barkhausen jumps. These causes generate the wide spec-
trum of scales, from the sample size up to the lattice
constant. We consider this fact as an argument for the
assumption that the dissipation of energy in SMM ex-
hibits the scale invariant features.

Therefore, correlations between the currents [8, 9] can
be expressed with the postulate of the generalized ho-
mogeneity of correlation function current density–current
density [10]. In a particular case we obtain the scaling
relation for the average of

∣∣j2
∣∣:

λc′ 〈∣∣j(r, t)2
∣∣〉 =

〈∣∣∣j(λa′r, λb′t)2
∣∣∣
〉

, ∀λ > 0, (8)

where a′, b′, c′ are scaling exponents. The quantity Ptot ≈〈∣∣j(r, t)2
∣∣〉 denotes energy loss in the case of soft mag-

netic materials. The symbol 〈. . .〉 denotes averaging with
respect to time and over the whole sample volume. On
the basis of Eq. (8), it can be assumed that the total en-
ergy loss in soft magnetic materials Ptot = F (f, Bm) is
given by a generalized homogeneous function

Ptot = F (f, Bm), λcPtot = F
(
λaf, λbBm

)
,

∀λ > 0, (9)
where Ptot — total energy loss, Bm — maximal magnetic
induction, f — frequency of magnetizing field, a, b, c —
scaling exponents.

4. Scaling of energy loss in soft magnetic
materials

Assumption, given by Eq. (9), immediately leads to
the following formula for energy loss [1]:

Ptot ≈ Bβ
m

[
Γ (1) f

Bα
m

+ Γ (2)

(
f

Bα
m

)2

+ Γ (3)

(
f

Bα
m

)3

+ Γ (4)

(
f

Bα
m

)4

+ . . .

]
, (10)

where α, β are related to exponents of Eq. (9):

β =
c

b
and α =

a

b
, (11)

and Γ (n)’s are the arbitrary coefficients.
Relation (10) is the generalized homogeneous func-

tion, therefore its every term describes energy loss phe-
nomenon in a wide range of spatial scales. At this point
of considerations we are able to indicate an internal con-
tradiction in the Bertotti formula (1). In general, the
contemporary used relation (1) is not the generalized
homogeneous function (for α 6= 1), whereas its every
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term is homogeneous. On the other hand, the accessi-
ble experimental data [1] as well as results of the new
measurements presented here are strong arguments for
the assumption that Ptot(f,Bm) is a uniform function in
generalized sense. Therefore, the relation (1) does not
describe a self-similar system, as it results from the em-
pirical investigations. Taking into consideration that all
terms in (1) are homogeneous in general meaning, their
sum is not homogeneous, it should be stated that this
relation is not self-consistent.

The phenomenological approach to energy dissipation
in soft magnetic materials, proposed in [1], reveal that
every term of relation (10) includes effective interactions
of the other terms, and consequently their total sum is
also the generalized homogeneous function, for any val-
ues of exponents α and β. It allows for their estimation
without violation of the homogeneity principle. Thereby,
considerations presented in further part of the paper are
based on relation (10).

4.1. Experimental data

Measurements of total energy loss Ptot were carried out
for the three samples of different classes of soft magnetic
materials, which exhibit diverse internal structures and
magnetic properties:

• crystalline material — non-oriented electrotechni-
cal steel sheets 3% Si–Fe,

• amorphous material Fe78Si13B9,

• Iron–nickel alloy 77% Ni–Fe.

Samples made of non-oriented electrical steel had the
shape of strip, whereas samples made of the remaining
magnetic materials had the shape of cylinder.

The measurements of total energy losses were carried
out as a function of maximum induction Bm, at fixed
values of frequency f . The induction Bm was changed
in the range from 0.1 T up to 0.7 T for iron–nickel al-
loys and up to 1.8 T for grain-oriented steel, step 0.1 T.
The range of frequency changes was from 10 to 400 Hz.
Thereby, for each magnetic material the set of curves
of total energy losses Ptot vs. maximum induction Bm

and frequency f was obtained. Next, the energy loss
measurements were carried out following to the norm
IEC60404-2. The norm’s requirements concern the mag-
netic properties’ measurements of the electrical steel strip
and sheet by means of an Epstein frame [11] and consist
in the followings:

1. general principles of ac measurements,

2. procedure for the measurement of the specific total
loss,

3. procedure for the determination of the peak value of
magnetic polarization, rms value of magnetic field
strength, peak value of magnetic field strength and
specific apparent power,

4. general principles of dc measurements,

5. procedure for the dc measurement of the magnetic
polarization.

The standards for magnetic measurements of power
loss in electrical steels require the wave form of the in-
duced voltage in the secondary coil to be a sinusoid with
respect to time, and its form factor must be 1.111± 1%
for the measurement of ac magnetic losses in steels.

In our measurements the shape factor of secondary
voltage was equal to 1.111± 0.5%. The extended uncer-
tainty of obtained measurements (repeatability of mea-
surements specified with standard deviation) was approx-
imately 1.5%.

The obtained detailed results in the form of charts
Ptot/Bβ

m vs. f/Bα
m for three chosen samples were depicted

in Figs. 1, 2, and 3. However, measurement results for
all samples were depicted in the charts, which illustrate
a linear dependence of exponents α and β (Fig. 4) and
the data collapse (Fig. 5).

Fig. 1. A comparison of measured (points) and theo-
retical (solid line) values of scaled total energy loss vs.
scaled frequency for amorphous ribbon Fe78Si13B9.

Fig. 2. A comparison of measured (points) and theo-
retical (solid line) values of scaled total energy loss vs.
scaled frequency for non-oriented electrotechnical steel
sheets 3% Si–Fe.
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Fig. 3. A comparison of measured (points) and theo-
retical (solid line) values of scaled total energy loss vs.
scaled frequency iron–nickel alloys 77% Ni–Fe.

Fig. 4. A phenomenological relation between the ex-
ponents α and β (points — measurement data, solid
line — linear fit according to Eq. (13)). The
three points from Table correspond to measurements
presented here, whereas the other seven are taken
from [1]. Differences between the samples I and II of
Co71.5Fe2.5Mn2Mo1Si9B14 result from the variability of
the technological parameters.

4.2. Parameter estimation of the generalized
homogeneous function

In order to estimate the values of exponents α and β
as well as the amplitudes Γ (n), the minimum chi square
method was applied, assuming normal distribution of fit-
ting error. The quantity to be optimized was the sum
of squares of differences between the measurement val-
ues of total energy loss Ptot and energy loss obtained
from Eq. (10), limited to its four first terms. Values
of exponents α, β and amplitudes Γ (1,2) for three cho-
sen magnetic materials (amorphous ribbon Fe78Si13B9,
non-oriented electrotechnical steel sheets 3% Si–Fe and
iron–nickel alloys 77% Ni–Fe) are given in Table.

The number of digits after decimal point gives the in-
formation about the relative uncertainties of exponent
and amplitude estimation. Values of amplitudes Γ (3) and

Fig. 5. The data collapse for total energy loss of soft
magnetic materials: points — measurements, solid line
— theoretical curve according to Eq. (14).

Γ (4) are 5 . . . 15 orders of magnitude lower, compared to
Γ (1) and Γ (2). Thereby, only amplitudes Γ (1) and Γ (2)

are significant, whereas terms of Γ (3) and Γ (4) can be
omitted, which leads to the following formula:

Ptot ≈ Bβ
m

[
Γ (1) f

Bα
m

+ Γ (2)

(
f

Bα
m

)2
]

. (12)

Figures 1–3 depict measured values of total energy loss
for chosen magnetic materials and values of energy loss
obtained from the scaling theory and optimization pro-
cedures. The scaled measured and theoretical data are
presented in the coordinate system Ptot/Bβ

m = F (f/Bα
m).

TABLE
Values of exponents α, β and amplitudes Γ (1),Γ (2).

Magnetic
α β

Γ (1) Γ (2)

materials [m
2

s2
T (α−β)] [m

2
s T (2α−β)]

amorphous

ribbon −0.85 0.56 2.50× 10−3 5.69× 10−6

Fe78Si13B9

non–oriented

steel −1.3923 −0.09435 28.488× 10−3 57.9× 10−6

3% Fe–Si

iron–nickel

alloy −2.53 −1.66 0.96× 10−3 2.25× 10−6

77% Ni–Fe

On the basis of measurement data for all analyzed mag-
netic materials, a relation between the exponents α and
β (see Fig. 4) in the following form was obtained:

β = 1.35α + 1.75. (13)
Our phenomenological formula (13) is most likely

strictly related to the analogous ones acting between var-
ious critical exponents and derived from the second order
phase transition theory [12]. On the basis of presented
results it could be stated that the above relation (13) is
universal, whereas the exponents are not. The exponent
values may be different due to different dimensions of the
samples. The relation (13) enables us to estimate the fea-
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sible values of α and β. The estimated sets of their values
depend on a cut-off of the considered series (10).

Here we present the two results: for the full infinite
series (10) and for its two terms approximation (12). As-
suming that the considered form for Ptot is not singular
in Bm = 0 we derive the following estimations for α:

−5 < α < 0 for (10),

−5 < α <
35
13

for (12).

β is determined by (13).

4.3. Data collapse

Very small values of Γ (3) and Γ (4) terms allowed cut-
ting off the expansion (10) above the third order. Because
the obtained formula is simple, it was possible to obtain
the data collapse by appropriate scaling. Accordingly
(12) was transformed to the sample-independent form,
which includes the scaled variables P̃tot and f̃ :

P̃tot = f̃ + f̃2, (14)
where

P̃tot =
Γ (2)

Γ (1)2

Ptot

Bβ
m

and f̃ =
Γ (2)

Γ (1)

f

Bα
m

. (15)

A chart of all measurement data, scaled according to
(15), confirms the data collapse for total energy loss
of soft magnetic materials. Figure 5 depicts the re-
vealed data collapse. Figure 6 is an enlarged fragment
of Fig. 5 and depicts the distribution of measurement
points around theoretical curve given by Eq. (14).

Fig. 6. Enlarged part of Fig. 5 — a distribution of mea-
surements around theoretical curve according to (14).

The revealed data collapse for the energy loss is a
definitive confirmation of the scaling hypothesis in refer-
ence to the phenomenon of energy loss in soft magnetic
materials. The formula (14) describing energy loss is uni-
versal. The variable f̃ , which appears in Eq. (14), is the
renormalized frequency dressed by magnetic induction
and sample geometry. Therefore, the obtained equation
is free from the boundary conditions and material-specific
quantities, which was possible due to multi-scalability of
the analyzed system.

5. Conclusions

The presented approach to the energy losses in soft
magnetic materials fits very well to accessible empirical
data. The first conclusion is that the two-component
model (12) is sufficient for the complete description of
phenomenon considered here. The second conclusion
concerns the universality of the derived results. The
formula for the energy losses expressed in dimensionless
units (14) as well as the relation between exponents are
universal.

This discovery suggests some new practical application
of the derived theory. It would be very convenient to
characterize the dissipation of energy in the given sample
by the three constants: Γ (1), Γ (2), and α. Knowing their
values and applying (14), (15) as well as (13), one can
calculate energy loss for an arbitrary values of Bm and
f . Moreover, reducing Bm and f to f̃ and Ptot to P̃tot

one can compare measurements performed on different
samples.

In comparison to the Bertotti formula we went back to
the two-term expression for the energy loss in SMM. One
can ask a question what happened to the term propor-
tional to f3/2? This term results from interactions be-
tween eddy currents generated in different points (ri, ti),
whereas in our approach all interactions are taken into
account by the very general assumption concerning the
scale invariance of SMM which is expressed by (9). In
effect we obtain formula (10) depending on f̃ = f/Bα

m

which we interpret as effective frequency dressed by all
types of interactions present in the considered system.
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