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A tight-binding model comprising a hopping and an attractive interaction term was considered for high tem-
perature superconductors. Explicit calculations on the effects of isotopic substitution of atoms and application of
pressure on the transition temperatures were made in this work. Exact analytical expressions for the isotope-shift
exponent (α) and pressure coefficient (γP ) of transition temperature (TC) considering the isotopic mass and pressure
dependence of the hopping and attractive interaction strengths from a minimal model describing superconductivity
were obtained. Theoretical predictions for α and γP with proper choice of parameters are found to be qualitatively
consistent with the results of the experiments of high TC oxides. The results depend on the band dispersion chosen.

PACS numbers: 74.20+f, 74.25.Bt, 74.25.Ha

1. Introduction and motivation

Since the discovery of superconductivity, the isotopic
substitution (α) of atoms and the pressure dependence
(γP ) of transition temperature have been recognised as
two key factors [1–6] affecting the transition tempera-
ture (TC). The isotope effects in superconductivity were
taken as evidence for phonon mediation. In the lower TC

materials, for example La2−xSrxCuO4 systems, TC can
be derived by changing the carrier concentration. There-
fore, it is possible to examine the relationship between
TC and α with this structure [5].

In general, the isotope shift exponent α is large for BCS
phonon mediated superconductor (exceeding the canoni-
cal value of 0.5, in some cases) in the underdoped region.
In many cases, α is very small at optimum doping where
TC is maximum and increases in the overdoped region.
The interest in phonon mediated superconductivity in
cuprates has also been revived due to the discovery of
rather large isotopic coefficients (α) in La2−xSrxCuO4

near x ≈ 0.12 and similar experiments on YBa2Cu3O7−8

with Pr and Gd substituted at the Y or Ba sites as ob-
served by Franck et al. [6]. Initial studies on isotope
effects in high TC superconductors found that the effect
is either absent or very small [7, 8]. Several experiments
have been performed for high temperature superconduc-
tors for isotopic mass [9, 10] and pressure dependence
[11–13].

Since the majority of these systems become super-
conducting on doping with holes, the dopant depen-
dent isotope-shift exponent of TC (α = −δ ln TC/δ ln M)
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and the pressure coefficient of the transition temperature
(γP = δ ln TC/δP ) have been seriously studied over the
years and certain general trends have been found [14, 22].
In the overdoped region, negative values of the pressure
coefficients at high pressures and small negative values of
α have been reported [9, 22]. For electron doped oxide
systems, the pressure coefficient is negative and its value
is large for low TC samples and decreases with increasing
TC [11].

In the present work, we propose to study all the salient
features of α and γP with doping from our theoretical
model by recasting the tight-binding Hamiltonian in the
BCS form and apply a judicious choice of parameters
to invoke the mass and pressure dependence of both the
hopping and attractive interaction strengths.

2. Theoretical model

In our model, we begin with local pairing interaction
in narrow-band systems with weak correlation. In the
weak-correlation limit, the minimal relevant model for
studying superconductivity would comprise of an attrac-
tive term for electrons. Thus our model Hamiltonian is

H = −t
∑

i,j,σ

a+
iσajσ − V

∑

i,j

ninj − µ
∑

i,σ

niσ, (1)

where t and V are the hopping matrix element and ef-
fective attraction between electrons at nearest neighbour
sites, respectively. a+

iσ(aiσ) is the usual electron creation
(annihilation) operator and niσ

(
= a+

iσaiσ

)
is the usual

number operator corresponding to the i-th site and spin
state σ(=↑↓). Here µ, the chemical potential, is deter-
mined by the filling of bands (doping in the case of oxide
systems).

(914)



Studies on Isotope Shift Exponent . . . 915

Now we will consider the band dispersion including the
next nearest neighbour given by [15, 16]:

εk = −2t1 (cos Kxa + cos Kya)

+4t2 cos (Kxa) cos (Kya)− µ. (2)
Here εk is the momentum dependent energy relative to
the chemical potential µ, K is the wave vector and t1
and t2 are the nearest neighbour (NN) and next nearest
neighbour (NNN) hopping terms.

As we are still in BCS approximation, the second term
on the right hand side of Eq. (1) is simplified by mean-
-field approximation with introduction of an order pa-
rameter

∆0 =
1
2

(〈ai↓aj↑〉+ 〈aj↓ai↑〉) . (3)

Then by performing momentum k–space transformation,
the Hamiltonian takes the BCS form

H =
∑

kσ

ξknkσ +
∑

k

∆k

(
a+

k↑a
+
−k↓ + h.c.

)
, (4)

where ξk = εk − µ, εk = −tzγk and γk =(
1
z

)∑
ij exp (ik ·Rij), Rij is the nearest neighbour lat-

tice vector and then the BCS type pairing, the supercon-
ducting gap parameter is given by

∆k = zγkν∆0. (5)
For a square lattice z = 4 and γk = cos kx + cos ky.

3. Evaluation of DOS and superconducting TC

We now define the momentum dependent double time
temperature dependent Green functions:

Gk̄k̄′ (ω) = 〈〈ak̄↑; a
+
k̄↑〉〉, (6)

G
(1)
kk′ (ω) = 〈〈a+

−k̄′↓; a
+
k̄↑〉〉. (7)

The density of states (DOS) near the Fermi surface
is obtained by using Eqs. (6) and (7) and the transition
temperature.

In general, DOS is defined by [14]:

ρ (ω) = −2
∑

k̄

Im 〈Gk̄ (ω)〉, (8)

where

Gk̄ (ω) =
∑

k̄′

(1)

G
k̄k̄′

(ω) =
1
2π

ω

(ω − εk̄′) (ω + i∆1)
(9)

is the normal Green function at low temperature.
We consider the change in DOS from its unperturbed

value to determine the effect on DOS due to alloying,
thus we have

δρ (ω) = −2
∑

k̄

Im
(〈Gk̄ (ω)〉 −GON

k̄ (ω)
)
, (10)

where
GON

k̄ ω = lim
∆→0

G
(0)

k̄
ω, (11)

δρ (ω) = − 1
π

∑

k̄

Im
∑

(ω)
(ω − εk̄)2

,

δρ (ω) =
ρ0 (ε)

π
Im

∑
(ω)

δ

δω
F (ω), (12)

where
∑

(ω) is the self-energy of the system.
At this stage, one needs to make a choice of ρ0(ε). Un-

der the simplest assumption of square DOS, ρ0(ε) which
becomes independent of ε, F (ω) is constant and there is
no change in DOS. Therefore, more general approxima-
tion could be to assume a Lorentzian form given by

ρ0 (ε) = ρ0 (0)
D2

D2 + ε2
, (13)

F (ω) = πρ0 (0)
D

ω + iD
, (14)

where D is the band width. For square DOS, D is large.
εk̄ is the energy just above the Fermi surface.

The transition temperature TC is obtained from the
gap equation

∆ = −V
∑

k̄

〈
a+

k̄↑a
+
k̄↓

〉
= −V

∑

k

〈ak↑a−k↓〉, (15)

where the gap correlation function is
〈
a+

k̄↑a
+
k̄↓

〉
= i

∫ ∞

−∞
dω

×
[
G(1) (ω + iε)−G(1) (ω − iε)

]

eβω + 1
. (16)

Thus using Eqs. (6), (7) and (16), we obtain
〈
a+

k↑a
+
−k↓

〉
= − ∆k

2Ek
tanh

(
βEk

2

)
(17)

with β = 1
kβT and Ek =

√
ξ2
k + ∆2

k.
¿From the set of coupled Eq. (5) and Eq. (17) for

the order parameters, one obtains at T = TC, the self-
-consistent equation for the gap as

∆k = −zγkV
∑

r

γr

[
− ∆r

2Er
tanh

(
βEr/2

)]
, (18)

which gives the equation for TC as

1 = zV

∫ +1

−1

dεrN (εr)
ε2r

2 (εr − µr)

× tanh
(

βr
c

εr − µr

2

)
. (19)

Here εr, µr, βr
c are a set of reduced variables, namely en-

ergy, chemical potential and 1
kβTC

in units of electronic
half bandwidth (W = 4t); i.e., εr = ε

W , µr = µ
W and

βr
c = Wβc with βc = 1

kβTC
. The reduced electronic DOS

[N(εr)] may be written in terms of electronic DOS, N(ε)
as N(εr) = WN(ε)

4. Isotope-shift exponent and pressure
coefficient of TC

The isotope-shift exponent (α) and the pressure co-
efficient (γP ) of TC is defined as α = −∂ ln TC

∂ ln M and
γP = ∂ ln TC

∂P .
Hence to derive α and γP we need to differentiate

Eq. (19) with respect to M and P . The basic parameters
in the model which govern TC are the hopping and attrac-
tive pairing strengths. In keeping with the experimental
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evidence of a change in the effective mass of charge carri-
ers with isotopic substitution in Y123 (YBa2Cu3O7−delta

samples [17], M dependence of t is fairly obvious. But
till date, there is no real experimental estimate for the M
dependence of V . However, it may be assumed that V is
mass dependent through its dependence on t (in analogy
with the t–J model). Thus the expression for α will be

α = − ∂ ln t

∂ ln M
+

(
∂ ln t

∂ ln M
− ∂ ln V

∂ ln M

)
1

βr
c zV P1

. (20)

As the pressure reduces lattice spacing, it is bound to
assist hopping and the strength of the attractive interac-
tion also should grow with applied pressure. The appli-
cation of pressure will alter the carrier concentration in
high TC oxide systems. Thus the expression for γP may
be written as

γP =
∂ ln t

∂P
+

(
−∂ ln V

∂P
− ∂ ln t

∂P

)
1

βr
c zV P1

+
(

P2

βr
c

− P3

2

)
1
P1

∂µr

∂P
, (21)

where

P1 =
∫ +1

−1

dεrN (εr)
ε2r
4

sech2

(
βr

c

εr − µr

2

)
, (22)

P2 =
∫ +1

−1

dεrN (εr)
1
2

(
εr

εr − µr

)2

× tanh
(

βr
c

εr − µr

2

)
, (23)

and

P3 =
∫ +1

−1

dεrN (εr)
1
2

(
ε2r

εr − µr

)

×sech2

(
βr

c

εr − µr

2

)
. (24)

The term ∂µr

∂P occurring in the expression for the pres-
sure coefficient i.e., in Eq. (21) may be written in terms
of the change in the carrier concentration (n) as

∂µr

∂P
=

1
2N(µr)

∂n

∂P
. (25)

The isotope shift exponent (α) and the transition tem-
perature (TC) are calculated using a square DOS and
DOS with a van Hove singularity (vHs) [18, 19]. From
Eq. (25) it is shown than for a square DOS

∂µr

∂P
=

∂n

∂P
(26)

as for a square (energy-independent DOS),

N (εr) =
1
2
, |εr| ≤ 1. (27)

For a normalised DOS with a vHs [18],
∂µr

∂P
= 0.20953 ln

∣∣∣∣
4
εr

∣∣∣∣
∂n

∂P
. (28)

The role of second nearest neighbour hopping in hole-
-doped high-TC cuprates are important. For calculating
the isotope shift exponent α, we will reform the expres-
sion for P1 from integration to summation form as given
by

I1 =
1
N

∑

k

( εk

2W

)2

sech2

[
βc

(
εk − µr

2

)]
. (29)

Thus using Eqs. (20), (29) and (2) the isotope shift
exponent α can be calculated and the pressure coefficient
(γP ) can also be evaluated in a similar way from Eq. (21)
and the dispersion (Eq. (2)) using integrals P1, P2 and P3

numerically.

5. Numerical results

The isotope shift exponent (α) and pressure coeffi-
cient (γP ) for BCS type superconductors and the rele-
vant theories applied to high temperature superconduc-
tors (HTSC) compounds like Y123 and lanthanum stron-
tium cobalt oxide (LSCO) compounds have been numer-
ically evaluated for s-wave dispersion relation (2). The
results are given in Figs. 1–6. Figure 1 represents the
variation of transition temperatures (TC) with chemical
potential µr in terms of reduced variable with potentials
mentioned in the figure caption of Fig. 1.

Fig. 1. Variation of TC with µr. Curves A and C are
for Vr = 0.628 and 0.4, respectively, and a square DOS
while B and D are for the same set of Vr values with
vHs in DOS.

The variations of α with µr are given in Figs. 2 and 3
and the variation of α with TC is given in Fig. 4 for
various values of Vr, TC and other related parameters.

In a similar way the variation of pressure coefficients
(γP ) with TC and µr have been plotted in Figs. 5 and 6,
respectively, with Vr = 0.628 and also using other re-
lated parameters. The figures are superimposed with ex-
perimental data for both hole doped Y123 systems and
electron doped materials.

6. Discussions

In the present work we highlight the study of α, γP and
TC as a function of doping (through µr) and discuss the
qualitative comparisons of their variations with the gen-
eral trends emerging from experiments on various high
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Fig. 2. Variation of α vs. µr with (δ ln t)/(δ ln M) =
−0.55. Curves A, B and C are for (δ ln V )/(δ ln M) =
−0.75 while D, E and F are for δ ln V/δ ln M = −0.45.
Other parameters for the curves are as follows: curves
A and F : Vr = 0.42, vHs in DOS; curve B: Vr = 0.42,
square DOS; curves C and E: Vr = 0.628, vHs in DOS
and curve D: Vr = 0.628 and a square DOS.

Fig. 3. α vs. µr with δ ln t/δ ln M = −0.55 and
δ ln V/δ ln M = −0.75. Curves B and C are for a square
DOS and Vr = 0.45 and 0.628, respectively, while curves
A and D are for a vHs in DOS for the same set of Vr

values. The solid and the dotted curves in the inset are
for Vr = 0.628 and 0.42, respectively, and a vHs in the
DOS; δ ln t/δ ln M and δ ln V/δ ln M are scaled down to
values of −0.11 and −0.133, respectively, to obtain re-
alistic value of α.

TC cuprates. Obviously, a suitable choice of parameters
such as Vr, the mass and pressure dependence of t and
V and the pressure dependence of carrier concentration
(n) are made from Ref. [19]. The choice of parameters
like (∂ ln t)/∂ ln M is based on experimental results [17]
on Y123 compounds, where (∂ ln m∗)/∂ ln M0 has been
reported to be ≈ 0.6m∗, where m∗ and M0 being the
effective mass of the charge carrier and average mass of
the oxygen atom, respectively. The effective mass of the

Fig. 4. α vs. TC/Tmax
C with δ ln t/δ ln M = −0.052 and

δ ln V/δ ln M = −0.1. The solid curve is for r2 = 0 (only
NN hopping) while the dashed curves are for r2 = 0.81
(longer dash) and 0.91 (shorter dash). The crosses and
full circles denote the data for La214 and Co-substituted
Y123 systems, taken from Ref. [14].

Fig. 5. δ ln TC/δP in units of 10−2 GPa−1 vs. µr

with δ ln t/δP = 1 × 10−2 GPa−1, δ ln V/δP =
2× 10−2 GPa−1, and Vr = 0.628. Curves A and B
are for δµr/δP = 0 while C and D are for δµr/δP =
1× 10−2 GPa−1. Curves A and C are for a square DOS
while B and D are a vHs in DOS.

charge carrier is inversely proportional to the effective
hopping strength, we treat (∂ ln V )/∂ ln M as a free pa-
rameter.

In Fig. 1, we have shown the variation of TC/W with
µr for different values of Vr and for two different types of
DOS (square DOS and vHs DOS).

In Figs. 2 and 3 α is plotted with µr. It is found that
α depends on the choice of (∂ ln V )/∂ ln M , the nature of
DOS and Vr for a given value of (∂ ln t)/∂ ln M . In our
earlier work [19], we have seen that if only the hopping
strength depends on the isotope mass, then α < 0 for
all µr, which corresponds to setting (∂ ln V )/∂ ln M = 0.
We choose (∂ ln V )/∂ ln M as −0.45 and −0.75.

Numerical exercises confirm that P1 in Eq. (22) is pos-
itive definite for all µr values and three distinct features
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Fig. 6. δ ln TC/δP vs. TC/Tmax
C for Vr = 0.628 and

a square DOS. Values of δ ln t/δP and δ ln V/δP are
the same as the ones used in Fig. 5. For curves A
and B, δµr/δP = 0.3 and 0.7, respectively, in units
of 10−2 GPa−1. For curve C, δ ln t/δP , δ ln V/δP and
δµr/δP are chosen as 2, 1 and 0 in units of 10−2 GPa−1.
Superposed on the graphs are experimental data for
both hole-doped (Y123 system represented by + sign)
and electron-doped materials (Nd2−x Cex CuO4 system
represented by full circles) taken from Ref. [22].

of α depending on the relative values of (∂ ln V )/∂ ln M
and (∂ ln t)/∂ ln M emerge.

i) For (∂ ln V )/∂ ln M > (∂ ln t)/∂ ln M , α increases
from large negative values for low values of µr to
small positive values as µr increases.

ii) For ∂ ln V
∂ ln M < ∂ ln t

∂ ln M , α decreases from large posi-
tive values when TC is low to a near minimum at
optimum doping and increases slightly on the over-
doped side.

iii) For (∂ ln V )/∂ ln M = (∂ ln t)/∂ ln M , equation
yields α = −(∂ ln t)/∂ ln M , which is a constant
and independent of the nature of DOS and doping
(µr).

It is to be noted that in Fig. 2 the dashed line corre-
sponds to the case where α is constant and independent
of doping, similar to BCS case. The other curves (A, B,
C, D, E, and F ) are given in the figure caption.

The dependence of α on Vr and from the nature of
DOS, we plot α against µr for V = 0.42 and 0.628 and for
both types of DOS (square and vHs) structures, holding
(∂ ln V )/∂ ln M and (∂ ln t)/∂ ln M fixed at −0.75 and
−0.55, respectively, in Fig. 3.

The effect of second NN hopping (through the dimen-
sionless parameter r2 = 2t2/t) on the behaviour of α with
experimental data for La(214) and co-substituted Y123
systems have been shown in Fig. 4 for a comparison. The
values of r2 = 0.81 and 0.91 have been taken from ear-
lier work [17]. The inclusion of NNN hopping enhances

α considerably for small values of TC and supresses α
slightly near TC of the order of Tmax

C .
The variation of pressure coefficient γP with µr for

different values of ∂µr/∂P but fixed values of (∂ ln t)/∂P
and (∂ ln V )/∂P have been shown in Fig. 5. We choose
(∂ ln V )/∂P > (∂ ln t)/∂P for the entire range of µr (for
γP positive) provided (∂µr)/∂P is small. γP is large for
low values of µr, where TC is small and decreases as µr

increases.
In Fig. 6, we show the variation of TC with TC/Tmax

C for
two sets of values of (∂ ln V )/∂P and (∂ ln t)/∂P , where
Tmax

C is the transition temperature at optimum doping.
For (∂ ln V )/∂P > (∂ ln t)/∂P , the pressure coefficient is
large and positive for underdoped systems for low TC val-
ues, whereas for (∂ ln V )/∂P < (∂ ln t)/∂P , the pressure
coefficient is negative for underdoped systems. In both
cases, the magnitude of pressure coefficients decreases
with increasing TC up to optimum doping.

7. Conclusions

¿From Figs. 1 to 6, one may conclude that for a simple
minimal model considered in the present case, the varia-
tion of α and γP with TC for both electron doped and hole
doped oxide superconductors may be explained even by
recasting the Hamiltonian in the BCS form. We should
mention here one of the limitations of our study. We
have considered only the case of extended s-wave pair-
ing. However, large number of evidences are present in
favour of d-wave pairing in high TC oxide systems which
is supposed to modify the results [20, 21], the anisotropic
extended s-wave pairing cannot be ruled out. We justify
by saying that the present model is a very good approx-
imation as the results agree well with the experimental
values.

In brief, we summarise our results by stating that the
exact analytical expressions for isotope shift exponent
and the pressure coefficient of TC considering the isotopic
mass and pressure dependence of hopping and attractive
interaction strength can be derived for a minimal model
system describing an oxide superconductor.
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