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The self-similar crystallization process of a binary mixture from a cooled boundary is studied on the basis of
two models with a planar front and mushy layer. Approximate analytical solutions of the process describing the
solidification with a mushy layer are found. The theory under consideration is in good agreement with experiments
carried out by Huppert and Worster for ice growing from aqueous salt solutions.
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1. Introduction

Mathematical descriptions of crystallization processes
play very important role in crystal growth, engineer-
ing, oceanography and metallurgy. The transition
amorphous-to-crystalline in the materials for optical
phase-change memories is of great practical importance.
The mathematical models allow predicting many proper-
ties of solids produced by melt cooling. If the liquid is an
alloy (a mixture of two or more components) its crystal-
lization process completely differs from the solidification
of a pure liquid. In particular, various distributions of im-
purity in the solid phase lead to different mechanical and
physical properties of ingots. This phenomenon arises
due to the impurity displacement into the melt by the
moving front of solidification. If the impurity displace-
ment is rather intensive, the constitutional supercooling
originates ahead of the planar solid-liquid interface and,
generally speaking, the two-phase zone (mushy region)
appears. Solid nuclei in the form of newly born crystals
may evolve in this zone. The development of this system
reduces the supercooling and leads to formation of a new
stable solidification mode characterized by the presence
of a mushy layer that separates the pure solid and melt
regions. Heat and mass transfer in the mushy layer has
a major effect on the properties of the solid materials
thus produced, which is also responsible for the marked
interest in the study of solidification of binary melts ac-
companied by formation of the aforementioned transition
layer.

Mathematical descriptions of solidification scenario are
complicated not only by nonlinearities of heat and mass
transfer equations but also by the need to apply bound-
ary conditions at solid-liquid interfaces which are evolv-
ing with time and whose positions must be determined as
a part of the solution. A full set of thermodynamic equa-
tions for a mushy layer is developed and a much-reduced
set of them is solved approximately in Ref. [1] for the con-
strained growth of a binary alloy. However, constrained
growth, in which the interfaces are supposed to advance
at a prescribed constant velocity, is applicable to indus-
trial crystal pulling (the Czochralski growth), but not to
the solidification of castings nor to many natural systems

where growth can proceed at a rate dependent on time
and, in particular, at a rate inversely proportional to the
square root of time. The aim of this paper is to develop
the theory where the interfaces propagate at rates depen-
dent on time.

2. Self-similar solidification with a planar front

Let us consider a unidirectional solidification process
of a binary melt along z-axis from a cooled boundary ex-
perimentally studied in Ref. [2]. Let us consider a semi-
-infinite region z > 0 filled with liquid which initially
has uniform composition C' = ¢y and temperature T.
We traditionally neglect the solute transport in the solid
phase and, following Ref. [3], ignore the effects of grav-
ity and imagine that the plane z = 0 forms the lower,
horizontal boundary of the domain. The temperature of
the cooled boundary is maintained at a value T' = Ty
lower than the initial liquidus temperature. The temper-
ature (T') and concentration (C) fields in the solid and
liquid phases are described by the classical heat and mass
transfer equations
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where p is the density, C), is the specific heat, £ is the
thermal conductivity, D is the diffusion coefficient and
z = h(t) is the frontal coordinate dependent on time ¢
(subscripts S and L designate the solid and liquid phases,
respectively); all of the transfer coefficients are assumed
to be constant in each phase. In the case of unidirec-
tional regime with a planar front, nothing depends on
the spatial coordinate directed perpendicular to the so-
lidification direction. The boundary conditions imposed
at the solid wall z = 0 and far from the phase transition
interface can be expressed in the form

T = TB, z = 0, (3)
C— Co, T — TOO7
Further, we consider the case when the front is close to
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equilibrium, that is
T (h,t)=—I'C (h*,t), z=h(t).
Heat and solute must be conserved at the front

dh oT oT
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z = h(t), (6)
C (h*,1) % +D (%S) T 0, z=h@#), (7)

where L stands for the latent heat parameter. The afore-
mentioned model (1)-(7) admits a similarity solution
with variable 7 and interface coordinate h(t) of the form

n=z/V4Dt, h(t) = AV4Dt, (8)
where the parabolic growth rate constant A is a part of
the solution.

Omitting mathematical manipulations, we express the
solution of problem (1)—(7) in terms of self-similar vari-
ables (8); the result is

(Th — TB) erf (6377)

T(77) = TB + orf (5S>\) ) n < )‘7 (9)
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where eg = /DClpsps/ks, e, = \/DCprpr/ki, T, and

C}, stand for the temperature and concentration at the
solidification front 7 = A. Three unknowns can be found
from the boundary conditions (5)—(7). Substitution of
distributions (9)—(11) into (5)—(7) gives
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where
_ PLCpL7 F(z) = Tz exp (x2) erfe(x),
PSCPS

G(z) = Vrzexp (2?) erf(x).

Equation (13) determines the parabolic growth rate con-
stant A. The driving temperature differences 77 =
—I'co—Tp, Ty = Too + I'co and graphs of A\ versus T,
To, and ¢p are shown in many figures in Ref. [3].

It is noteworthy that the temperature ahead of the pla-
nar solidification front can fall below the local liquidus
temperature. This phenomenon is called “constitutional
supercooling”. This supercooling arises if the concentra-
tion gradient exceeds the temperature one at the front.
Mathematically, this condition can be written in the form

al < =T %
0z z=ht 0z z=ht .

Substituting (10) and (11) into (14) and taking into ac-

(14)
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count (12), we rewrite inequality (14) for the self-similar
case as

(To/I) et F(N)
Cri(N) > Ci(N) FEn) — 2P0
If the left- and right-hand sides of (15) become identical,
we have a supercooling onset. Therefore if (15) holds
true the aforementioned description of the solidification
scenario with a planar front becomes inapplicable and we
shall use a mushy layer model.

(15)

3. Self-similar solidification with equilibrium
mushy layer

We analyze the solidification of a binary melt with a
mushy layer, in which heterogeneous inclusions of the
new phase grow in such a manner that this layer is vir-
tually totally desupercooled. In this case, a mushy layer
may be treated as independent of the precise morphology
of the growing solid phase. The mush is also treated as
a continuum, and its physical properties are taken to be
functions of the local volume fraction of solid ¢. Heat
and mass transfer are described by heat conduction and
diffusion equations in the mushy layer a(t) < z < b(t)
(a(t) and b(t) stand for the solid-mush and mush-liquid

boundaries)
or o (, or Dy
(PCp) T (kmaz) ‘*‘PSLEa
0 0 oC
500 =D (x5, (16)

where subscript m denotes properties of the mushy layer.
The thermal properties of the mushy layer are assumed
to be volume-fraction-weighted averages of the properties
of the individual phases so that [3]:

km() = kL (1 =) + ks,

(PCp)m = PLCL (1 = @) + psCpsp.

The heat and mass flux conditions imposed at the
boundaries z = a(t) and z = b(t) have the form

da aT oT
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The governing Eqgs. (16) and (17) and the boundary
conditions (18) admit similarity solutions with the same

(18)

dt
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similarity variable n and interface positions of the form

a(t) = \gV4Dt, b(t) = \pV4ADt, (19)
where )\, and )\, are the parabolic growth rate constants
(mushy layer coordinates in the self-similar solidification
mode).

Taking into account that relaxation times of the so-
lute concentration field is several orders of magnitude
higher than the thermal relaxation time, the tempera-
ture field in the mushy layer can be written as a linear
function of coordinate z (see, among others [4-7]). Fur-
thermore, taking into account that the diffusion field in
the mushy layer is practically frozen and the mass trans-
port is caused by the impurity displacement into the lig-
uid phase we use a linear temperature approximation and
the Scheil equation for the impurity distribution in the
mushy layer [4-7]. Thus, instead of (16), we have

T()=Ta+ Ton, Cl) = 1

Substituting ¢ = ¢, at n =1, and ¢ = ¢, at n = n, into
(20) and keeping in mind (17), we get

1
A=-+ (1 =) (T3 + T2 ),

(20)

T: 1-— — 1-—
Ty = 2 [/\b ( @b) Ao ( Spa)] ) (21)
@b — Pa
Now, using (17), (19) and (20), we rewrite the boundary
conditions (18) for the determination of ¢4, vy, Aa, Ao

and 75 in the form

—% (T3 + Tg)\b) =cCo + Cz ()\b) ) (22)
{Eg (1; o) kmk(fb) [co + Ci (M)
T, ki Ci(hw) | €8 ks
T [km e Fou) ok (M)“”’} -
22 0+ 2B B o)
2Xq €%

—|—T [T — (T3 + T2 \a)] = 0, (25)

[Ty + 220 (Ts + ToAa)] (1 — ) = 0. (26)

Generally speaking, four regimes (1) ¢, = 0, v, = 1;
(2) oo =0, 9o # 15 (3) wp # 0, 9o = 1, and (4) ¢y # 0,
wa # 1 can be considered as possible solidification sce-
narios. However two cases ¢ = 0, ¢, = 1 and ¢ # 0,
va = 1lead to T5 + T\, = 0 (see Eq. (21)). The lat-
ter suggests that the impurity concentration cg + C; (Ap)
at the boundary mushy layer-liquid phase goes to zero
(see Eq. (22)). Therefore, these unphysical cases will be
omitted from our consideration.

Further, omitting tedious and cumbersome mathemat-
ical manipulations following from (21)—(26) let us now
rewrite the final formulae for two possible regimes:

case (2) o, =0, pq # 1:
22,1°C; (Ap)

Ty (M) = Fow)

Ya (M) = 2Xa (M) Ao — Aa (Mo)], (27)
N () = () — \/j\ig:b())\b—) 8\ C7 (Ab)’ (28)
{”a OIS 11— )

F2[A+ (1= A) pa (No)] 2 (M) }G (esAa (Ap))

+2¢3 [Wl’j)TB + 0 ()\b)] =0; (29)

case (4) gy # 0, pa # 1:

22, I
(M) = 4= (1—A)pp (\p)
A0 dati)]
F () o |

oy (Np) =

(30)

Ci (\)/F (W) — 2/a — Alco + Ci ()]
(1= A)[eo + Ci (M)] — €d/a ’
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{”“’”S - ga ()

+A+ (1 =4 pa (M)

+% 2Xa (M) T + T2 (N)] (34)
where
2 (M) = 2X5Ci (M) + F (M) [co + Ci (M),

and formulae (29) and (34) represent transcendental
equations for the determination of A\,. Thus, we have
two different analytical solutions ((27)—(29), case (2) and
(30)—(34), case (4)) describing the self-similar solidifica-
tion scenario.
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4. Concluding remarks

Figures 1-3 illustrate analytical solution in accordance
with two possible cases (2) and (4). Region I corresponds

Abp

Fig. 1. Parabolic growth rate constants as functions of
Ty = —I'co — Ts. Solid lines correspond to the frontal
(region I) and mushy layer (region III, case (2)) solid-
ification scenarios. Dashed lines illustrate the formal
solution in accordance with case (4). Region II de-
scribes intermediate (transitional) regime between re-
gions I and III. Vertical dotted lines show the boundaries
between different solidification modes. Physical param-
eters of sodium nitrate NaNOs are given in Ref. [3].
The circles are data from the experiments of Huppert
and Worster [2]. To, = 15°C, ¢o = 14 (measures the
weight per cent of NaNOs).
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Fig. 2. Solid fractions for case (2) (solid line) and
case (4) (dashed lines) as functions of temperature 7T7.
Dashed lines close together exist in regions II and III.
However, in region 11, only solid lines represent physical
solutions whereas dashed lines show the formal solution.
Physical parameters of sodium nitrate NaNOs are given
in Ref. [3].

to the planar solidification front model (expressions (12)
and (13)) up to the temperature difference T} when the
left- and right-hand sides of inequality (15) become equal.
Immediately afterwards inequality (15) holds true and
the classical description of the regime with a planar front
becomes inapplicable. In this case, strictly speaking,
we have solutions (30)—(34), case (4). These solutions

b

Co

Fig. 3. The parabolic growth rate constant A\, as a
function of c¢p. Physical parameters of sodium ni-
trate NaNOgs are given in Ref. [3]. The circles are
data from the experiments of Huppert and Worster [2].
T =15°C, Tp = —17°C.

are continuous in terms of A\ = )\, and discontinuous in
terms of A\,, ¢, and ¢, at the boundary between regions I
and IT (when T3 agrees with the constitutional supercool-
ing condition Cy; = C;). In other words, at this point
Aas 9o and ¢, abruptly appear in such a manner that
the solid fractions lie so close to unity that a mushy layer
influence is negligible in practical situations. However,
region II is responsible for the instability evolution [3],
which leads to the appearance of another solidification
mode (expressions (27)—(29), case (2)) in the presence of
a mushy layer. Mathematically, these solutions appear
at the boundary between regions II and III and, appar-
ently, they are stable contrary to the second branch of so-
lutions (case (4)), which conceptually corresponds to the
instability evolution of small perturbations for the planar
front in region II. Thus, expressions (27)—(29) hold true
in region III. Also, the latter is confirmed by experimen-
tal data, which demonstrate the mushy layer evolution
in accordance with case (2). What is more, regions II
and IIT were found on the basis of numerical solution of
the problem under consideration [3]. The question now
arises of whether there is a single solution in region II.
As this metastable region reflects the effect of constitu-
tional supercooling, its existence is connected with nu-
cleation and growth of newly born solid crystals in the
supercooled liquid matrix. The latter, however, is out of
the equilibrium theory under consideration where such
effects are ignored. Let us especially emphasize in con-
clusion that the parabolic growth rate constants A\, and
Ap (solid curves, Fig. 1, case (2)) within the framework of
our approximate analytical solutions approach to a joint
point at the boundary between regions II and III.
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