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This paper is devoted to new analytic results relating to the nonstationary dynamics of directional so-
lidification of ternary solutions with two moving layers of the phase transition lying between solid and liquid
phases. Explicit analytical solutions of the problem under consideration are constructed on the basis of laboratory
experiments carried out by Aitta, Huppert and Worster.
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1. Introduction

The seemingly trivial moving boundary problem of the
crystallization of a solid phase from a cooled wall comes
under the rubric of the so-called Stefan problems describ-
ing a wide range of physical processes. Their rich nonlin-
ear behavior has attracted substantial scientific interest
and their ubiquity in fields ranging from metallurgy to
geophysics stimulates developing new mathematical ap-
proaches (including phase-field models) (see, among oth-
ers [1–8]). Solidification of single-component and binary
solutions within the framework of the classical frontal
approach as well as of the mushy layer scenario has in-
tensively been studied by many authors for the last few
years. Some many natural and industrial processes fre-
quently met in practice cannot be explained in terms of
single-component or binary systems but can, at least par-
tially, be understood in terms of ternary systems. The
major features of the dynamics of ternary systems can
be studied using laboratory system of two salts dissolved
in water. The mathematical model under consideration
and its analytical solution are based on laboratory exper-
iments [9] where a ternary solution was cooled from below
and all convection was suppressed because the buoyancy
of the fluid released on crystallization always increased.
The present study is concerned with new analytic results
on the nonlinear dynamics of solidification of a three-
-component alloy with two mushy layers on the basis of
experimental data on crystallization of the ternary alloy
H2O–KNO3–NaNO3.

2. The moving boundary problem
and its analytical solution

Let us consider a unidirectional solidification process
generated by the external cooling of the solid boundary
x = 0. Figure 1 demonstrates a scheme of the solid-
ification process. A semi-infinite zone x > 0 is filled
with liquid x > p (t) with initially uniform compositions

C∞, B∞ and temperature T∞, solid 0 < x < e (t) and
two mushy layers, primary c (t) < x < p (t) and cotectic
e (t) < x < c (t). The solid boundary x = 0 is main-
tained at the atmospheric temperature T0 < T∞. Two
components with impurity concentrations C and B are
dissolved in solvent A so that the primary mushy layer
characterizes the phase transition of solvent A whereas
the cotectic mushy layer describes freezing of components
A and B. The eutectic solid phase is made up of compo-
nents A, B, and C in the solid state. Keeping in mind the
phase diagram of the ternary alloy H2O–KNO3–NaNO3

[9, 10] and experimental conditions [9], we arrive at the
following model of heat and mass transfer equations and
boundary conditions imposed at the moving boundaries
solid phase–cotectic mushy layer, cotectic mushy layer–
primary mushy layer and primary mushy layer–liquid
phase. For the sake of simplicity, equations and their ap-
proximate analytical solutions will be discussed further
separately in each of the regions.

Fig. 1. A schematic diagram of directional solidifica-
tion of a ternary solution (x — spatial coordinate, p (t),
c (t) and e (t) — moving boundaries of the phase tran-
sition). Shaded zones demonstrate solid fractions of
components A, B and C (B and C are dissolved in A,
A + B + C = 1).
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The heat-conduction and diffusion equations in the pri-
mary mushy layer (ϕB = ϕC = 0) can be written in the
form [1, 10]:
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]
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where T is the temperature in the primary mushy layer,
ρp is the density, cp is the heat capacity, LV is the la-
tent heat, D is the diffusion coefficient, ϕ is the solid
fraction, χ = 1 − ϕA is the liquid fraction and t is the
solidification time (subscripts A, B, and C designate re-
spective components) The heat conductivity kp depends
on χ and constant thermal conductivities of the solid, kS

and liquid kL [10]: k (χ) = kLχ + kS (1− χ).
The phase transition temperature T and compositions

B and C in the primary mushy layer are related by means
of the liquidus surface equation [10]:

T = TM + mBB + mCC, c (t) < x < p (t) , (4)
where TM is the phase transition temperature of the pure
material, mB and mC are the constant liquidus slopes.

Taking into account that relaxation times of the so-
lute concentration fields are several orders of magnitude
higher than the thermal relaxation time, the tempera-
ture field in the primary mushy layer can be written as
a linear function of coordinate x (see also experimental
data [9]):

T (t, z) = T1 (t) + T2 (t)x, c (t) < x < p (t) . (5)
Omitting the left-hand side of Eq. (1) due to the fact that
the relaxation times of impurity concentration fields ex-
ceed greatly the temperature relaxation time, we obtain
from (1) and (5) the following dependence between spa-
tial and time derivatives:

T2 (t)
∂ϕA

∂x
=

LV

kL − kS

∂ϕA

∂t
, c (t) < x < p (t) . (6)

Now, substitution of (5) and (6) into (2) and (3) gives
the desired solution in the form

B (t, x) =
b2TDϕA + Bpb

1− ϕA
,

C (t, x) =
c2TDϕA + Cpb

1− ϕA
,

TD =
LV DB

kS − kL
,

c (t) < x < p (t) . (7)
Here, for the sake of simplicity we consider that
DB = DC (Bpb and Cpb stand for the impurity con-
centrations at x = p (t) or ϕA = 0). Also, we assume
that the compositions B and C are linear functions of
x with corresponding derivatives B2 (t) = b2T2 (t) and

C2 (t) = c2T2 (t) proportional to the temperature gradi-
ent, B (t, x) = B1 (t) + B2 (t)x and C (t, x) = C1 (t) +
C2 (t)x. This representation of the compositions B and
C follows from the linear form of Eq. (4) by analogy with
binary mixtures.

Combining expressions (4), (5) and (7), we find the
solid fraction in the primary mushy layer

ϕA (t, x) =
T1 + T2x− TM −mBBpb −mCCpb

T1 + T2x− TM + TD
,

c (t) < x < p (t) , (8)
where we used that mBb2 + mCc2 = 1.

Combining expressions (7) and (8), we come to

b2 =
Bpb

mBBpb + mCCpb
, c2 =

Cpb

mBBpb + mCCpb
.

Substituting these constants and the solid fraction (8)
into (7), we finally arrive at the compositions in the pri-
mary mushy layer

B (t, x) =
Bpb (T1 + T2x− TM)

mBBpb + mCCpb
,

C (t, x) =
Cpb (T1 + T2x− TM)

mBBpb + mCCpb
,

c (t) < x < p (t) . (9)
We call attention to the special case of the Scheil form

of diffusion Eqs. (2) and (3) when the first terms in the
right-hand sides of (2) and (3) are omitted. This repre-
sentation in the absence of diffusion leads to the same dis-
tributions (9). The reason is that the diffusion field in the
mushy layer is frozen and the mass transport is caused
by the impurity displacement into the liquid phase.

Further, let us assume that the impurity displacement
rate and the phase transition rate of boundary x = p (t)
coincide very closely due to the fact that the diffusion
profile at x > p (t) is nearly constant [9]. Therefore,
mass balances at the interface primary mushy layer–
liquid phase can be written as

(B∞ −Bpb)
dp

dt
= DB

∂B

∂x
,

(C∞ − Cpb)
dp

dt
= DC

∂C

∂x
, x = p (t) . (10)

Substituting (9) into (10), we get a relation connecting
the interface concentrations (DB = DC):

Cpb =
C∞
B∞

Bpb. (11)

Combining (11) and first expressions in (9) and (10), we
have

(B∞ −Bpb)R
dp

dt
= DBB∞T2,

R = mBB∞ + mCC∞. (12)
Equating temperature (4) and the interface tempera-

ture at x = p (t) and taking into account (11), we obtain
the interface concentration Bpb in the form

Bpb = (Tpb − TM )B∞/R. (13)
Now, substituting Bpb from (13) into (12) and taking

into account (5) at x = p (t), we get the temperature
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coefficients in the primary mushy layer
T1 (t) = Tpb − p (t)T2 (t) ,

T2 (t) =
R + TM − Tpb

DB

dp

dt
.

Laboratory experiments [9] show that the phase tran-
sition temperature Tpb is very nearly constant. On this
basis, let us represent the temperature field in the liquid
phase as

T (t, x) = T∞ + (Tpb − T∞)
erfc

(
x/2

√
κt

)

erfc
(
p (t)/2

√
κt

) ,

x > p (t) , (14)
where κ is the thermal diffusivity coefficient in the liquid.
From the mathematical point of view distribution (14) is
valid only if Tpb is constant. Physically, we use this tem-
perature profile known from the theory of self-similar so-
lidification as approximation for small time oscillations of
the interface temperature. One further comment should
be made. Also, distribution (14) is valid if p (t) ∝ √

t
(the latter follows from our subsequent theory).

Equating temperature derivatives at x = p (t) and
keeping in mind expressions (5) and (14), we come to
a relation connecting two unknowns p (t) and Tpb:

(T∞ − Tpb)DB exp
(−p2 (t)/4κt

)
√

πκt (R + TM − Tpb)
=

erfc
(
p (t)/2

√
κt

) dp

dt
, (15)

where temperature Tpb should be constant.
The heat and mass transfer in the cotectic mushy layer

(ϕC = 0, χ = 1−ϕA −ϕB) is described by the following
set of equations [10]:

ρccc
∂T

∂t
=

∂

∂x

[
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∂x

]
+ LV

∂ (ϕA + ϕB)
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,

e (t) < x < c (t) , (16)

χ
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χ
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)
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e (t) < x < c (t) , (17)

χ
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∂

∂x

(
χ

∂C

∂x

)
+ C

∂ (ϕA + ϕB)
∂t

,

e (t) < x < c (t) , (18)
where T is the temperature in the cotectic mushy layer,
ρc is the density, cc is the heat capacity.

Again, keeping in mind that a relaxation time of the
temperature field in the cotectic region is greatly smaller
than relaxation times of the diffusion fields, we approxi-
mate the temperature profile as linear function of x (we
use (19) instead of (16)):

T (t, x) = T3 (t) + T4 (t)x, e (t) < x < c (t) . (19)

Let us write down two equations connecting the tem-
perature and impurity concentrations in the secondary
mushy layer. Taking into consideration Eq. (19), we
have [10]:

B (t, x) = − 1
mc

B

(T3 + T4x− TE) + BE ,

e (t) < x < c (t) ,

C (t, x) = − 1
mc

C

(
T3 + T4x− TAB

E

)
,

e (t) < x < c (t) , (20)
where constants mc

B , mc
C , TE , BE and TAB

E are known
from the phase diagram [10].

In order to integrate the mass transfer Eqs. (17)
and (18), we express the temperature derivative with re-
spect to time in terms of its spatial analog by means
of Eq. (16). As before, omitting the left-hand side of
Eq. (16) and substituting the linear temperature profile
from Eq. (19), we arrive at a relation, similar to (6):

T4
∂ (1− ϕA − ϕB)

∂x
=

LV

kL − kS

∂ (1− ϕA − ϕB)
∂t

,

e (t) < x < c (t) . (21)

Now, combining (17), (18), (20) and (21), we find the
compositions B and C in the cotectic mushy layer

B (t, x) =

(
χ− χ−S

)
TD/mc

B + BSbχ
−
S + ϕ−BS − ϕB

χ
,

e (t) < x < c (t) , (22)

C (t, x) =

(
χ− χ−S

)
TD/mc

C + CSbχ
−
S

χ
,

e (t) < x < c (t) , (23)
where χ−S = 1 − ϕ−AS − ϕ−BS, χ (t, x) = 1 − ϕA (t, x) −
ϕB (t, x), BSb and CSb are the solute concentrations at
x = c (t), ϕ−AS and ϕ−BS are the boundary values of ϕA

and ϕB at the left side of boundary x = c (t).
Experimental data [9] show that the temperature field

in both the mushy layers can be approximated by a single
linear function of x, that is T1 = T3 and T2 = T4.

Equating expressions (9) and (20) (to do this, we sub-
stitute B or C from (20)), we obtain the phase transition
boundary c (t) as a composed function of time

c (t) = p (t)

+
TAB

E R + mc
CC∞TM − (mc

CC∞ + R)Tpb

(mc
CC∞ + R)T2

. (24)

Combining expressions (8) and (24) at x = c (t), we
have the solid fraction at the right side of this boundary

ϕ+
AS = 1

− (mc
CC∞ + R) (RBpb + TDB∞)

B∞
[(

TAB
E + TD − TM

)
R + mc

CTDC∞
] . (25)

Equating the left-hand sides of (20), (22) and (23) and
omitting mathematical manipulations, we get the solid
fractions in the cotectic mushy layer

ϕB (t, x) = ϕ−BS + (BSb − TD/mc
B)χ−S +

(TD −mc
CCSb) (T1 + T2x− TE + TD −mc

BBE)
mc

B

(
T1 + T2x + TD − TAB

E

) χ−S , (26)
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ϕA (t, x) = 1− ϕB (t, x)

− TD −mc
CCSb

T1 + T2x + TD − TAB
E

χ−S . (27)

The solid fractions ϕ−AS and ϕ−BS at the left side of
boundary x = c (t) are determined by the mass balance
boundary conditions [10]. Taking into consideration for-
mulae (9) and (20), we rewrite these conditions in the
form (DB = DC , T2 = T4)

DBT2

[(
1− ϕ−AS − ϕ−BS

)
R +

(
1− ϕ+

AS

)
mc

BB∞
]

=

mc
BR

[
ϕ−BS +

(
ϕ+

AS − ϕ−AS − ϕ−BS

)
BSb

] dc

dt
, (28)

DBT2

[(
1− ϕ−AS − ϕ−BS

)
R +

(
1− ϕ+

AS

)
mc

CC∞
]

=

mc
CRCSb

(
ϕ+

AS − ϕ−AS − ϕ−BS

) dc

dt
. (29)

Taking into account that the concentration field is con-
tinuous at x = c (t), we have C∞BSb = B∞CSb.

Keeping in mind that the temperature field in the solid
region, 0 < x < e (t), coincides with the temperature field
in two mushy layers, we can express this function in the
form

T (t, x) = T0 − T0 − TE

e (t)
x, 0 < x < e (t) ,

T1 (t) + T2 (t) e (t) = TE ,

where T0 is the temperature maintained at the solid wall
x = 0; whence it follows that

e (t) =
TE − T1

T2
= p (t) +

TE − Tpb

T2
. (30)

Keeping in mind that T2e (t) = TE − T0, we find the

solid phase–cotectic mushy layer interface coordinate in
the form

e (t) =
T0 − TE

T0 − Tpb
p (t) . (31)

Eliminating e (t) from expressions (30) and (31), we ar-
rive at the following law of motion of the primary mushy
layer–liquid phase boundary:

p (t) =
√

p (0) + σDBt, σ =
2 (Tpb − T0)

R + TM − Tpb
. (32)

Now, substitution of p (t) from (32) into (15) confirms
our hypothesis about constant temperature Tpb. As a re-
sult, we come to the following transcendental equation
for the determination of Tpb:

Tpb − T∞
T0 − Tpb

√
σDB

πκ
= erfc

(√
σDB

4κ

)
exp

(
σDB

4κ

)
.

Now we can conclude that the process under consider-
ation is self-similar because three boundaries move as
square root functions of time (see expressions (24), (31)
and (32)) and boundary temperatures are invariable.

Keeping in mind that Tpb − T0 = T2p (t) and dp/dt =
σDB/2p (t), we represent the rate of boundary c (t) in
the form

dc

dt
=

DBW

p (t)
,

W =
(TM − T0) mc

CC∞ +
(
TAB

E − T0

)
R

(mc
CC∞ + R) (R + TM − Tpb)

. (33)

Dividing (28) by (29) and taking into account (33) we
find the solid fractions ϕ−AS and ϕ−BS

ϕ−AS = s− ϕ−BS s =
C∞ (Tpb − T0)

(
1− ϕ+

AS

)
+ R (Tpb − T0)/mc

C −WRCSbϕ
+
AS

R (Tpb − T0)/mc
C −WRCSb

,

ϕ−BS = CSb

(
ϕ+

AS − s
) (1− s)R/mc

B +
(
1− ϕ+

AS

)
B∞

(1− s)R/mc
C +

(
1− ϕ+

AS

)
C∞

+BSb

(
s− ϕ+

AS

)
.

The solid fractions ϕ+
Ae and ϕ+

Be on the right side of
boundary e (t) can be found from expressions (26) and
(27) by substitution of x = e (t) whereas the boundary
values ϕ−Be and ϕ−Ce on the left side of this phase transi-
tion interface can be found from the mass balance con-
dition imposed at x = e (t) [10]. Omitting mathematical
details, we have

ϕ−Be = ϕ+
Be + BEΘ − DBΘT2

mc
Bde/dt

,

ϕ−Ce = CEΘ − DCΘT2

mc
Cde/dt

, Θ = 1− ϕ+
Ae − ϕ+

Be,

where compositions BE and CE are known from the
phase diagram and ϕ−Ae = 1− ϕ−Be − ϕ−Ce.

3. Results and discussions

The temperature profile in the solidification region is
plotted in Fig. 2. It is easily seen that the temperature
field is linear in the solid phase and two mushy layers
whereas its behavior differs from a linear dependence in
the liquid region. The reason is that the growing solid
phase displaces dissolved impurities into the liquid ma-
trix and, as a result, the solute concentration in the vicin-
ity of the ingot mould (x →∞) increases with time. The
latter leads to a decrease in the phase transition tem-
perature. This fact combined with a constant tempera-
ture T∞ explains a temperature departure from linear-
ity. As may be seen from Fig. 3, the solid fractions in
two mushy layers decrease away from the boundary solid
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Fig. 2. The temperature distribution in the solidifica-
tion region in accordance with the theory under con-
sideration and experimental data [7] (black circles, ex-
periment 7) for different time points (numbers at the
curves). Physical parameters are given in Refs. [7]
and [8].

Fig. 3. The solid fractions in cotectic and primary
mushy layers at the point of time t = 105 s in accor-
dance with the theory under consideration.

phase–cotectic mushy layer. Such a behavior corresponds
to the classical solidification theory of binary mixtures
(see, among others [1]). As would be expected, the liq-
uid composition C decreases with x due to the effect of
impurity displacement by the growing crystal (Fig. 4).
Contrary to this classical behavior, the liquid composi-
tion B increases (decreases) with x in the cotectic (pri-
mary) layer. 3D plot in Fig. 5 shows a dynamic behavior
of the liquidcomposition B. The liquid composition B

Fig. 4. The impurity concentrations of components B
and C at the point of time t = 105 s in accordance with
the theory under consideration.

attains its maximum at the moving phase transition in-
terface cotectic mushy layer–primary mushy layer (such
a behavior was observed in experiments [9]) From the
mathematical point of view, this is due to the fact that
coefficients mB , mC and mc

B are negative [10] (distribu-
tions (9) and (20)). Physically, the reason is that the
liquid composition B undergoes a phase transition in the
cotectic mushy layer resulting in a decrease in composi-
tion B in the vicinity of the phase transition interface
x = e (t).

Fig. 5. 3D behavior of the liquid composition B (B cor-
responds to KNO3). Points N, O, P and K, L, M lie in
the time planes t = 104 s and t = 105 s, respectively.
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[8] J. Eiken, B. Böttger, I. Steinbach, Phys. Rev. E 73,
06122 (2006).

[9] A. Aitta, H.E. Huppert, M.G. Worster, J. Fluid Mech.
432, 201 (2001).

[10] D.M. Anderson, J. Fluid Mech. 483, 165 (2003).


