Characterization of La-Doped TiO₂ Nanopowders by Raman Spectroscopy

M. Šćepanovića,∗, S. Aškrabića, V. Bereca, A. Golubovića, Z. Dohčević-Mitrovića, A. Kremenovićb and Z.V. Popovića

aCenter for Solid State Physics and New Materials, Institute of Physics Pregrevica 118, 11080 Belgrade, Serbia
bFaculty of Mining and Geology, Laboratory for Crystallography University of Belgrade, Djušina 7, 11000 Belgrade, Serbia

Titanium dioxide (TiO₂) nanopowders doped with 0.65, 1, 2, 3 and 4 wt.% of lanthanum ions (La³⁺) were synthesized by sol-gel technology. Dependence of structural and morphological characteristics of nanopowders on La³⁺ content and synthesis conditions is investigated by the Raman spectroscopy. Very intensive modes observed in the Raman spectra of all nanopowder samples are assigned to anatase phase of TiO₂. Additional Raman modes of extremely low intensity can be related to the presence of certain amount of highly disordered brookite phase in nanopowders. Dependence of the intensity ratio of the Raman modes which originate from anatase and brookite on doping conditions is specially analyzed. In order to estimate the variation of nanocrystallite size with dopant content, shift and asymmetrical broadening of the most intensive E₂g Raman mode of anatase are analyzed by phonon confinement model. The obtained results are compared with the results of X-ray diffraction spectroscopy. Special attention is dedicated to the changes in the Raman spectra of pure and La-doped TiO₂ nanopowders observed after high temperature treatment.

PACS numbers: 81.20.Fw, 81.07.Wx, 78.30.–j, 07.05.Tp

1. Introduction

Titanium dioxide has three polymorphs: rutile (tetragonal, P42/mmm), anatase (tetragonal, I41/amd), and brookite (orthorhombic, Pbca). All of them have numerous applications as important industrial materials. In recent years, nanosized TiO₂, especially anatase TiO₂, has attracted much attention as key material for photocatalysts [1], dye-sensitized solar cells [2], gas sensors [3] and electrochromic devices [4]. The applications of nanosized anatase TiO₂ are primarily determined by its physicochemical properties such as crystalline structure, particle size, surface area, porosity and thermal stability. The aim of this paper is to investigate the variations in structure of anatase nanopowders, synthesized by sol-gel method, induced by doping with lanthanum. Structural properties, such as: existence of mixed phases (anatase in combination with considerable amount of rutile or brookite phase), particle size and particle size distribution, as well as value and type of the strain (compressed or tensile) determined by the Raman spectroscopy are correlated to the content of La-dopant.

2. Experimental details

TiCl₄ was used as the precursor in the synthesis process. The Ti(OH)₄ hydrogel was obtained by hydrolysis of TiCl₄ at 0°C with controlled addition of 2.5 wt.% aqueous ammonia into the aqeous solution of TiCl₄ (0.3 mol/l) and careful control of the pH value of the solution (9.3). TiCl₄ is soluble in water but it experiences rigorous reaction at 20°C which can be very important to perform this reaction at lower temperature. After aging in the mother liquor for 5 h, the as-prepared hydrogel was filtered and washed out with deionized water until complete removal of chlorine ions. The obtained Ti(OH)₄ hydrogel was converted to its ethanol-gel by repeated exchange with anhydrous ethanol for several times (by repeated introduction of anhydrous ethanol). The obtained alcogel represents the starting point for production of TiO₂ nanoparticles. Alcogel was placed in a vessel, dried at 280°C and calcined at temperature of 550°C, after which it was converted to the nanopowders. In the case of La-doped TiO₂, LaCl₃·7H₂O was used. All chemicals used in this experiment were analytical grades (Merck Chemicals) and were used as received.

Powder X-ray diffraction (XRD) was used for the identification of crystalline phases, quantitative phase analysis and estimation of crystallite size and strain. The XRD patterns were collected on a Philips diffractometer (PW1710) employing Cu Kα₁,₂ radiation. Step scanning was performed with 29 ranging from 10 to 135°, step size of 0.06° and the fixed counting time of 41 s/step. The XRD patterns were used to refine crystallographic structure and microstructural parameters using the procedure explained elsewhere [5, 6]. The Fullprof computer program was used [5].

∗ corresponding author; e-mail: maja@phy.bg.ac.yu
The Raman measurements were performed at room temperature using the Jobin-Yvon T6400 triple spectrometer system, equipped with confocal microscope and a nitrogen-cooled CCD detector. The 514 nm laser line of an Ar+ laser was used as an excitation source.

3. Results and discussion

Relevant and the most intensive diffraction peaks in the XRD patterns of all samples belong to anatase crystal structure of TiO$_2$ (JCPDS card 78-2486). The patterns of pure TiO$_2$ sample and TiO$_2$ doped with 1 wt.% of La, together with the corresponding unit cell parameters of anatase (the values in parenthesis represent estimated standard deviations), are presented in Fig. 1. These results show that value of the parameter $a$ in both samples varies around its reference value ($a_0 = 3.78479(3)$ Å). However, the value of the $c$ parameter is smaller than the reference one ($c_0 = 9.51237(12)$ Å), especially in La-doped sample. Decrease in c parameter value with La doping could be a consequence of the lattice contraction induced by doping. The presence of low-intensity diffraction peak at $2\theta \approx 30.8^\circ$ that can be ascribed to the brookite phase of TiO$_2$ is observed in all XRD patterns (JCPDS card 29-1360).

Structure refinements were performed by the Rietveld method. Low values of agreement factors between the model, both for structure and microstructure, and XRD data indicate high accuracy of obtained results. The obtained average crystallite size and average strain in anatase and brookite phase, as well as quantitative phase analysis results (brookite content), were summarized in Table. These results showed that doping with 1 wt.% of La induced crystallite size decrease, whereas strain value and brookite content increased. The large values of the average strain in brookite crystallites indicate that this phase is highly disordered both in pure and La-doped samples.

![Fig. 1. (a) XRD diffractograms of pure and La-doped TiO$_2$ samples. (b) Enlarged diffraction peak ascribed to brookite phase.](image)

<table>
<thead>
<tr>
<th>Samples</th>
<th>Anatase crystallite size [nm]</th>
<th>Average strain in anatase [%]</th>
<th>Brookite content [%]</th>
<th>Brookite crystallite size [nm]</th>
<th>Average strain in brookite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure TiO$_2$</td>
<td>12</td>
<td>$4.2 \times 10^{-3}$</td>
<td>16</td>
<td>35</td>
<td>$19.6 \times 10^{-3}$</td>
</tr>
<tr>
<td>La-doped TiO$_2$</td>
<td>10</td>
<td>$5.7 \times 10^{-3}$</td>
<td>24</td>
<td>26</td>
<td>$22.0 \times 10^{-3}$</td>
</tr>
</tbody>
</table>

Several factors such as phonon confinement [8–12], strain [8, 13], non-homogeneity of the particle size distribution [8, 9, 13], defects and nonstoichiometry [8, 14], as well as anharmonic effects [9, 15] can contribute to the changes in the peak position, linewidth and shape of the $E_{g(1)}$ Raman mode in anatase TiO$_2$ nanoparticles. However, the separation between these various contributions is not straightforward [16]. Dominance of one or more of these factors, observable in the Raman spectra, is determined by the structural characteristics of a TiO$_2$ nanopowder: grain size and grain size distribution, existence of mixed phases (anatase in combination with considerable amount of rutile or brookite phase), value and

![TABLE](image)
Characterization of La-Doped TiO$_2$ Nanopowders by Raman Spectroscopy

Fig. 2. (a) Raman spectra of pure and La-doped TiO$_2$ samples. (b) Frequency and linewidth of $E_{g(1)}$ Raman mode for TiO$_2$ with 0 to 4 wt.% of La. The error bars correspond to experimental error.

Fig. 3. (a) PCM fits of anatase $E_{g(1)}$ Raman mode for pure and La-doped samples. (b) Average particle dimensions for TiO$_2$ with 0 to 4 wt.% of La, obtained from PCM. The error bars correspond to the estimated statistical errors.

Fig. 4. (a) Lorentzian fits of brookite modes in the experimental Raman spectra. (b) The ratio of the total brookite modes intensity and the anatase $B_{1g}$ Raman mode intensity for TiO$_2$ with 0 to 4 wt.% of La. The error bars correspond to the errors obtained by fit analysis.

It is well known that the phase transition from anatase to rutile occurs at $\approx 600^\circ$C. In order to investigate the influence of La doping on phase stability of nanostructured TiO$_2$, pure TiO$_2$ and TiO$_2$ doped with 3 wt.% of La were treated at high temperatures up to 800$^\circ$C. The Raman spectra of these samples, before and after thermal treatment, are shown in Fig. 5. It could be observed that the heating of pure TiO$_2$ to 800$^\circ$C causes redshift and narrowing of anatase $E_g$ Raman mode which im-
Fig. 5. Raman spectra of pure TiO$_2$ and TiO$_2$ doped with 3 wt.% of La at room temperature before and after heating to 800$^\circ$C. $\omega$ is the mode frequency and $w$ is the linewidth of $E_g(1)$ Raman mode before (bh) and after (ah) heating. $R$ denotes rutile modes.

plies anatase crystallite growth. Also, the appearance of the new Raman modes assigned to rutile phase was registered. After the same heating treatment of the La-doped sample neither such drastic changes of $E_g$ Raman mode nor the appearance of peaks in the spectrum, belonging to rutile phase, were registered. This allowed us to conclude that La doping stabilized TiO$_2$ nanostructure at high temperatures and shifted the temperature of anatase–rutile phase transition to values higher than 800$^\circ$C.

4. Conclusion

A detailed Raman study of sol-gel synthesized anatase TiO$_2$ nanopowders doped with lanthanum ions (La$^{3+}$) in the range from 0 to 4 wt.% was presented in this paper. It was demonstrated that the frequency shift and broadening of the most intensive anatase $E_g(1)$ Raman mode are the consequences of both confinement effect due to the nanosize dimensions of anatase crystallites and the disorder induced by the presence of brookite phase and La dopant in the samples. This enables not only basic phase identification but also the estimation of the nanoparticles size and brookite contents in TiO$_2$ nanopowders with different La content.

This study allows us to investigate the structural variations of nanosized TiO$_2$ arisen from the change in doping conditions and it confirms that doping of TiO$_2$ by La$^{3+}$ ions significantly improves phase and nanostructure stability of TiO$_2$ powders at high temperatures.

Acknowledgments

Authors express their thanks to Mirjana Grujić-Brojčin for the original software solutions which enabled application of PCM for numerical simulation of the Raman spectra of the investigated samples. This work is supported by the Serbian Ministry of Science under project No. 141047, the OPSA-026283 project within the AC FP6 programme and SASA project F-134.

References