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Electron and Hole States in Closed Spherical Quantum Dot

with Linearly Graded Composition

R. Kostić and D. Stojanović∗
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The theoretical investigation of the electron and hole spectra in a quantum dot with a linearly graded
composition within the effective mass approximation is presented. The particular example is β-HgS surrounded
by CdS. β-HgS core of radius rC is surrounded by concentric spherical layers each of Hg1−xCdxS composition
(x is function of r) and finally, form radius rS by CdS. The existence of these intermediate layers, as model of
graded composition, influences rapidly electron and hole spectra.

PACS numbers: 73.22.Dj, 73.21.La

1. Introduction

Physical properties of quantum dots and related com-
pounds have become under intensive investigation for po-
tentials to use in optoelectronics, high density memory,
quantum dot lasers, biosensing and biolabeling.

Continuous advances have led to the development of
various heterostructures. The choice of materials and
their space arrangement is determined by the desired
properties.

At the surface between two materials there is a drastic
change in composition and in all parameters. Techno-
logically it is not always possible to get such a step-like
change in composition, and a graded composition space
is often formed between two materials. In some cases this
grade composition is designed to get the desired optical
properties without size changing [1–5].

Spherical nano-heterosystems HgS/CdS have been the-
oretically [6-9] and experimentally [6, 10, 11, 12] inten-
sively studied. In this paper we present calculation re-
sults for spherical quantum dot that consists of: a spher-
ical core of β-HgS surrounded by N layers of Hg1−xCdxS
compositions (x is proportional to the layer distance from
the center) and finally by CdS. It is well known that CdS
and HgS readily form solid solutions on their entire con-
centration range.

Our calculations were performed in the well-known and
widely used effective mass approximation (EMA) [6–8].
The parameters for the calculation in EMA are effective
masses of materials in the structure and conduction and
valence offsets between materials. We assumed that ef-
fective masses and conduction and valence offsets change
proportionally to x, from the HgS values to the CdS
values.
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2. Model and results

A spherical heterosystem consisting of a β-HgS core
with the radius rC covered by N Hg1−xCdxS layers em-
bedded in CdS with the radius rS, is investigated. In
this particular case N = 4. The i-th layer, i = 1, . . ., N ,
consists of Hg1−xCdxS, x = i/(N + 1) and is situated
between radius ri−1 and radius ri:

ri =

{
r0 = rC, i = 0,
rS−rC

N i + rC, i = 1, . . . , N.
(1)

Electrons and holes in such a system are characterized
by their effective masses and potentials. Effective masses
are

m∗
e,h(r) =




m∗
e,h0

, r ≤ r0 = rC,
m∗

e,hN+1
−m∗

e,h0
N+1 i + m∗

e,h0
, ri−1 < r ≤ ri,

i = 1, . . . , N,

m∗
e,hN+1

, r > rN = rS.

(2)

In this case m∗
e,h0

are effective masses of HgS (m∗
e0 =

m∗
eHgS

= 0.036me, m∗
h0

= m∗
hHgS

= −0.044me) and
m∗

e,hN+1
are effective masses of CdS (m∗

eN+1
= m∗

eCdS
=

0.2me, m∗
hN+1

= m∗
hCdS

= −0.7me) (see Table). Poten-
tials are

Ve,h(r) =




Ve,h0 , r ≤ r0 = rC,
Ve,hN+1−Ve,h0

N+1 i + Ve,h0 , ri−1 < r ≤ ri,

i = 1, . . . , N,

Ve,hN+1
, r > rN = rS.

(3)

In this case Ve,h0 are electron and hole potentials in
HgS (Ve0 = VeHgS = −1.35 eV, Vh0 = VhHgS = −1.85 eV),
and Ve,hN+1

are electron and hole potentials in CdS

(768)
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TABLE

Material parameters of the system: a — lattice con-
stant, Eg — energy gap, Ve, Vh — conduction and va-
lence band potential (energetic scale is Ve = 0 eV in
CdS), m∗ — effective mass, me — electron mass.

a [Å] Eg [eV] Ve [eV] Vh [eV] m∗
e/me m∗

h/me

β-HgS 5.851 0.5 −1.35 −1.85 0.036 −0.044

CdS 5.818 2.5 0 −2.5 0.2 −0.7

(VeN+1 = VeCdS = 0 eV, VhN+1 = VhCdS = −2.5 eV),
Table.

Considering that electron and hole spectra are mainly
formed by size quantization, the stationary Schrödinger
equation for a single particle, in this case, may be ex-
pressed as(

− ~2

2m∗∇2 + V (r)
)

Ψ(r) = EΨ(r). (4)

For spherically symmetric potential V (r) the separa-
tion of radial and angular coordinates leads to

Ψnlm(r) = Rnl(r)Ylm(θ, ϕ). (5)
Rnl(r) is the radial wave function, and Ylm(θ, ϕ) is a
spherical harmonic. n is the principal quantum number,
and l and m are the angular momentum quantum num-
bers.

For a spherical potential with stepwise constant values
V0 (in core), Vq (q = 1, . . ., N) and VN+1 in surrounding
material, as defined in (3), the radial function Rnl,q(r) in
energy region |Vq| > |E| ≥ |Vq+1|, q = 0, . . ., N consist of
N + 2 parts

Rnl,q =





R0
nl,q = Al

0jl (K0r) ,

r ≤ rC = r0,

Ri
nl,q = Al

ijl (Kir) + Bl
inl (Kir) ,

ri−1 ≤ r ≤ ri, i = 1, ..., N,

RN+1
nl,q = Al

N+1h
(1)
l (KN+1r)

r ≥ rN = rS,

(6)

K0 =
√

2m∗
0

~2 (|V0| − |E|), Ki =
√

2m∗
i

~2 (|Vi| − |E|), i =

1, . . . N , KN+1 =
√

2m∗
N+1
~2 (− |E|), jl, nl, h

(1)
l are the

Bessel, Neumann and Hankel spherical functions. Solu-
tions already satisfy conditions to be regular when r = 0
and to vanish sufficiently rapidly when r → ∞. The so-
lution must satisfy boundary conditions

Ri
nl,q(r) |r=ri = Ri+1

nl,q(r) |r=ri ,

1
m∗

i

dRi
nl,q (r)
dr

|r=ri =
1

m∗
i+1

dRi+1
nl,q (r)
dr

|r=ri

i = 0, ..., N. (7)
Equations (7) for each q, q = 0, . . ., N , lead to a system

of 2N +2 linear equations for the 2N +2 unknown coeffi-
cients. It has nontrivial solutions only if its determinant

Dl,q = Dl,q(Enl) = 0, |Vq| > |E| ≥ |Vq+1| ,

q = 0, ..., N. (8)
Once the eigenvalues Enl are determined from (8), the

linear equations can be solved yielding the coefficients to
be a function of one of them. The last undetermined co-
efficient is determined by the normalization condition for
Rnl,q(r),

∫∞
0

R2
nl,q(r)r

2dr = 1. As q goes from 0 to N
and all solutions are determined, we can unify them to
get the complete picture of eigensolutions Enl and cor-
responding wave functions Rnl. These calculations were
performed independently for electrons and holes (proce-
dure is similar), giving the confinement energies Ee

nl and
Eh

nl, and wave functions Re
nl and Rh

nl.
The calculations of the electron and hole spectra in

the heterosystem under study were performed according
to the described model with the common material pa-
rameters of the system, given in Table [6, 7]. We inves-
tigated the influence of width of grade region to transi-
tion energies for a QD of fixed dimension. We illustrate
this influence through example: rS = 10a0 = 5.851 nm
(a0 = aHgS) and present electron and hole spectra in
Fig. 1, l = 0, 1, 2.

Fig. 1. Electron and hole spectra l = 0, 1, 2 for rS =
10a0 = 5.851 nm as function of ∆ (the width of the
sector of gradient composition).

∆ = rS− r0 is the width of the spherical shell of grade
Hg1−xCdxS composition. r0 = rS−∆ is the radius of the
HgS core. ∆ = 0 is a case of the HgS sphere with the ra-
dius r0 = rS, i.e. without gradient region, surrounded by
CdS. This is a well known structure and a basic example
of a closed QD.

Each ∆ value in Fig. 1 corresponds to nano-
-heterosystem of characteristic gradual composition in
region between the HgS core and the surrounding CdS
medium. Bigger ∆ corresponds to smaller gradient of
composition within ∆.

The energies of the first solutions for electrons Ee
10,

Ee
11, Ee

12 increase and the first solutions for holes Eh
10,

Eh
11, Eh

12 decrease with the increase in ∆. Energy of ba-
sic transition, between the first hole and the first electron
state, is E10(∆) = Ee

10(∆)− Eh
10(∆). E10(∆) energy in-

creases from E10(∆ = 0) = 731 meV to E10(∆ → rS) →
1480 meV. Therefore, the energy of the basic transition
is increased by ≈ 760 meV.
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From corresponding wave functions one can see that
the electron and the hole are situated at almost the same
position in QD. When ∆ increases both the electron and
the hole move towards the center of the QD, to be in the
core as much as possible.

For comparison, the results of our energy calculations
for rS = 5a0 = 2.9255 nm of basic transitions are
E10(∆ = 0) = 1053 meV (for smaller r0 = rS transition
energy is higher) and E10(∆ → rs) → 1875 meV. The
energy of the basic transition is increased by ≈ 820 meV.
Like in the first example, when ∆ increases both the elec-
tron and the hole move towards the center of the QD,
but, as there is less space than in the first example, they
are forced to situate in the ∆ region. In this case, in
the gradual composition region the potential is less deep
than in the core and particles tend to move into the core.
In smaller QD, where space is more limited, change of
transition energies is more drastic for the same ∆ values.

3. Discussion and conclusions

To illustrate the influence of inhomogeneity to charac-
teristic energies we combined HgS and CdS and formed
the spherical heterosystem HgS/Hg1−xCdxS/CdS. Vari-
ous heterosystems formed by these materials were inves-
tigated in detail, but never in this composition.

In this particular case the existence of gradual compo-
sition region for a case of fixed QD dimension, rS, influ-
ences drastically basic E10 transition energy.
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