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on low-temperature metal–insulator transitions and on reentrant metallic behavior in solids have been investigated.
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1. Preliminaries

There has been continuing interest in the proper treat-
ment of metal–insulator transitions in general, and in the
special situation where one encounters reentrant metallic
behavior. This is manifested, for example, in the electri-
cal properties of paramagnetic V2O3 doped with small
amounts of Cr. With rising temperature T above 180 K,
one first observes metallic characteristics; followed by a
first-order transition to an insulating state; followed at
still higher temperatures by another transition back to
the metallic regime [1]. Also, there are instances, such
as the NiS2−ySey system, that exhibit a metal– insula-
tor transition with rising temperature close to absolute
zero [2]; the latter runs contrary to normal observations
of an insulator–metal transition with rising T .

These unusual situations have been rationalized lately
by invoking the dynamic mean field theoretical approach,
as championed by a number of research groups [3]. Their
principal aim was to generate partial density-of-states
curves which match experimental photoemission results,
and to note changes concomitant to the occurrence of the
metal–insulator transition. While their success is cer-
tainly impressive, the theoretical analysis requires con-
siderable computational expertise, such that the funda-
mentals operative in forcing the electronic changes are
not readily discerned. This invites a retrospection to
earlier work, beginning with the discussions by Mott [4]
and by Hubbard [5] whose insights provided the impetus
to subsequent treatments of electron correlation effects.
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This included a procedure originally proposed by SpaÃlek
and co-workers [6–8] who developed more elementary ap-
proach on which the subsequent discussion of this article
is based. They considered an assembly of interacting
electrons in a solid as a collection of independent quasi-
particles that are subject to the framework of solid state
physics. In the simplest case, one deals with nondegener-
ate band that is exactly half-filled, and for which — in the
insulating state at the zero of temperature — each of the
N lattice sites is occupied by one electron. At nonzero
temperatures any given lattice site may be empty, ac-
commodate one electron of either spin, or two electrons
with paired spins. Double occupancies are energetically
disfavored by the Coulomb repulsion U between the two
electrons on the same site; electron interactions between
more distant neighbors are ignored. Let η represent the
probability of encountering a given lattice site in a doubly
occupied configuration. Then the total repulsive energy
is specified by NUη. Relative to this state, the mobile
electrons have an average negative kinetic energy ε̄ as
they hop between available adjacent sites. However, this
process is counteracted by the electronic repulsions. The
resulting hindered motion is simulated by introducing a
band narrowing factor Φ(η), specified below. The mod-
ified kinetic energy is then given by −N |̄ε̄|Φ(η). If the
repulsion effect dominates the solid tends to be an insu-
lator; if electron motion dominates the material is a rel-
atively poor conductor. This model thus supersedes the
more primitive conventional analysis in which electron in-
teractions are ignored∗. The electrical state of a system
is thus determined by the balance between the negative
kinetic and positive potential energies; this balance is
temperature-dependent, and — under appropriate con-

∗ The more elementary model presents a reasonable approxima-
tion for the case of good conductors with a high density of charge
carriers. In those cases, the Coulomb interaction for an electron
assembly is screened and drops off almost exponentially with sep-
aration distance between electrons. However, this approximation
fails precisely for the present case under study.

(745)
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ditions — gives rise to one or more electrical transitions.
It’s verified by detailed calculations based on the theory
expounded in Ref. [6–9].

In the theory which describes this effect SpaÃlek et al. [4]
did not systematically or numerically explore all the con-
sequences of their theoretical work. As an extension of
their work Datta et al. [10] treated the effects of introduc-
ing densities of state (DOS) other than the rectangular
DOS considered in the earlier work. Subsequently, the
original low-temperature approximation was extended
[11] to include terms in T 4 in addition to those in T 2.
Here we attempt to investigate the effects of introduc-
ing several other DOS functions, in the low temperature
approximation that includes term of order T 4. Also, we
hope to identify within the framework of this analysis the
general feature that drives metal–insulator transitions.

The present paper is based on the expression for the
free energy of the electron assembly in a nondegenerate
band of the form [11]:

Fi

N
= −|ε̄|Φ + Uη − ρ0λ

2

Φ
− Ψ

4Φ3
λ4, (1.1)

in which

Ψ ≡ 7
5
ρ′′0 −

(ρ′0)
2

ρ0
, λ2 ≡ π2(kBT )2

3
. (1.2)

Here kB is Boltzmann’s constant, T is the temperature,
and ρ0 represents the density of states (DOS) function
per site and per spin at the Fermi level; ρ′0, ρ

′′
0 repre-

sent the first and second derivatives with respect to ε,
evaluated at the Fermi level. Without loss of generality
the zero of energy may be chosen to coincide with the
Fermi energy as long as the DOS for the half–filled band
is symmetric about its midpoint.

Since η ≤ 1/4, the quantity Φ may be expanded in
powers of η as

Φ(η) = f0 + f1η + f2η
2 + . . . , (1.3)

in which the various fi are constants that are deter-
mined by imposing restrictions on the hopping of elec-
trons between various sites [6]. The resulting quantity
Fi, Eq. (1.1), is actually a functional of the unknown
η and becomes a thermodynamic free energy upon im-
posing equilibrium conditions by minimization, setting
∂F/∂η = 0. Since Φ appears both in the first term, as
well as in the denominator of the temperature-dependent
terms, the mathematical operations become unwieldy. It
is therefore convenient to replace the quantity Φ by its
low-temperature approximation in the denominators, as
shown below. The resulting simplification is justified be-
cause the use of Eq. (1.1) itself is restricted to low tem-
peratures.

The optimized double occupancy η0 for a rectangular
DOS is given by [6]:

η0 =
1
4

(
1− U

2W

)
, (1.4)

where W is the width of the bare band. This quan-
tity enters in the original derivation because it is related
by the expression W = 2z|q| to the transfer integral q
which specifies the probability of an electron transfer to

available adjacent sites, z being the number of nearest
neighbors. Let us note that η0 must be nonnegative; this
introduces the restriction U/(2W ) ≤ 1, so that 2W ≡ Uc

may be considered as a cut-off energy for the Coulomb
interactions; for larger U the material remains an insula-
tor. Furthermore, the optimized band narrowing factor
is given by [4]:

Φ0 = 8η0(1− 2η0). (1.5)
Equations (1.4) and (1.5) specify η0 and Φ0 in terms of
the ratio U/Uc as the independent quantity.

2. Fundamental derivation

We begin by optimizing Eq. (1.1), which leads to
∂(Fi/N)

∂η
= 0 =

(
−|ε̄|+ ρ0λ

2

Φ2
0

+
3Ψλ4

4Φ4
0

)
∂Φ
∂η

+U. (2.1)
On the assumption that the terms in λ will be “small”,
we expand η in terms of its value η0 at λ= 0:

η = η0 + hλ2 + jλ4, (2.2)
and we similarly expand Φ as a Taylor series in λ2 and
λ4 about its value at λ = 0:

Φ ≡ ΦA = Φ0 + (hλ2 + jλ4)
(

∂Φ
∂η

)

0

+
1
2
(h2λ4)

(
∂2Φ
∂η2

)

0

. (2.3)

The coefficients h and j are assumed to be independent
of η0.

Use of (2.2) in (2.3) in the current approximation yields
ΦA = Φ0

(
1 + aλ2/Φ0 + bλ4/Φ0

)
, (2.4a)

with
a ≡ 8(1− 4η0)h, b ≡ 8(1− 4η0)j − 16h. (2.4b)

Now return to Eq. (2.1), and use the expansion (2.4a)
while retaining only terms up to order λ4; this yields

∂(Fi/N)
∂η

= 0 =
(
−|ε̄|+ ρ0λ

2

Φ2
0

− 2
ρ0aλ4

Φ3
0

+
3Ψλ4

4Φ4
0

)

×∂ΦA

∂η
+ U. (2.5)

In addition, we use Eqs. (2.2)–(2.4) to set
∂ΦA

∂η
= 8(1− 4η0)− 32(hλ2 + jλ4). (2.6)

Next, let us introduce (2.6) in (2.5) and rearrange the
result to obtain a sum of terms Aλ0 +Bλ2 +Cλ4 = 0. If
this latter relation is to vanish for any arbitrary value of
λ, as required by (2.5), we must demand that the coeffi-
cient multipliers of λ0, λ2 and λ4 vanish separately. On
imposing this requirement on the coefficient A of λ0 ≡ 1,
we find that

8(1− 4η0) = U/|ε̄|, η0 = (1/4)(1− U/Uc), (2.7a)
which reproduces Eq. (1.4) and justifies the assertion that
η0 specifies the double occupancy at λ = 0. Thus, for any
U < Uc double occupancies and empty lattice sites ex-
ist even at T = 0; however, the corresponding transition
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probabilities for electron transfers are also very low, so
that such materials are exceedingly poor conductors. We
also note for future use that at the critical value U = Uc,
η0= 0, whence

Uc = 8|ε̄|. (2.7b)

Proceeding similarly with the coefficient B of λ2 and
by use of (2.7a) we may solve for

h =
−ρ0U

32|ε̄|2Φ2
0

, (2.7c)

and from the coefficient C of λ4, using (2.7a) and (2.7b),
we obtain

j =
−ρ2

0U

32|ε̄|2Φ4
0

− ρ2
0U

3

512|ε̄|5Φ5
0

− 3UΨ
128|ε̄|2Φ4

0

. (2.7d)

It remains to determine the free energy per site via
Eq. (1.1), using Eqs. (2.2) and (2.3). We find that

Fi

N
= −|ε̄| [Φ0 + 8(hλ2 + jλ4)(1− 4η0)− 16h2λ4

]

+U(η0 + hλ2 + jλ4)− ρ0λ
2

ΦA
− Ψλ4

4Φ3
A

. (2.8)

On introducing (2.4b) and (2.7a) we encounter consider-
able cancellation, leading to the simplified relation

Fi

N
= −|ε̄|Φ0 + Uη0 − ρ0λ

2

ΦA
− Ψλ4

4Φ3
A

+ 16|ε̄|h2λ4. (2.9)

Next, expand ΦA in the denominators using (2.3) while
retaining only terms of order λ2 and λ4; in this process
quantities involving j drop out. Then eliminate h via
(2.7c) and a, via (2.4b). After some tedious algebra one
ends up with the final expression for the Helmholtz free
energy per site as

Fi

N
= −|ε̄|Φ0 + Uη0 − ρ0λ

2

Φ0
− U2ρ2

0λ
4

64|ε̄|3Φ4
0

− λ4

4Φ3
0

[
7
5
ρ′′0 −

(ρ′0)
2

ρ0

]
. (2.10)

For future use it is highly desirable to put everything in
dimensionless form. We thus divide both sides by W ;
note that by (2.7b), Uc = 8|ε̄|; and set λ ≡ Wt, yielding

Fi

NW
= −1

8
Uc

W

(
1− U/W

Uc/W

)2

− (ρ0W )t2[
1− (U/Uc)

2
]

− 8 (U/Uc)
2 (ρ0W )2t4
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2
]4

− W 3t4

4
[
1− (U/Uc)

2
]3

[
7
5
ρ′′0 −

(ρ′0)
2

ρ0

]
. (2.11)

In the above the ratio Uc/W , the product ρ0W , and
the multiplier of t4 in the numerator of the last term
are determined via the DOS function ρ(ε), as shown
below. Thus, Fi/NW depends functionally on t2 ≡
(π2/3)(kBT/W )2 and parametrically on the choice for
U/Uc. Equation (2.11) is the end result of interest; this
formulation is a slightly generalized version of a previ-

ously published result [11]. The above relations deter-
mine the thermodynamic characteristics of an interactive
electron assembly in the present approximation.

We now focus attention on the transition from the
itinerant to the insulating state. In the latter case ev-
ery electron remains immobile and each occupies one
site in either the “spin up” or the “spin down” config-
uration; hence, no unoccupied sites remain. The en-
tropy per site for such localized carriers is then given
by Sl/N = (kB/N) ln 2, while their kinetic energies van-
ishes. Hence the reduced Helmholtz free energy for the
totally localized configuration is specified as

Fl/NW = −(kBT/W ) ln 2. (2.12)
As is well established, a transition from the itinerant to
the localized state occurs under conditions where the free
energies, as specified by (2.11) and (2.12), exactly match.
This requirement fixes the conditions under which metal–
insulator transitions may occur; it forms the basis of
much of the subsequent discussion.

3. Special cases

We now consider a variety of special cases.

3.1. Rectangular density of states

The detailed discussion that follows is also applicable,
with appropriate modifications, to the remainder of the
cases considered below. For the rectangular density of
states (RDOS) case we take ρ = ρ0 = 1/W as constant
in the energy range −W/2 ≤ ε ≤ W/2 and zero outside.
For a half-filled band |ε̄| = W/4; this includes the factor
of two required to take account of spin degeneracy; also,
Uc = 8|ε̄| = 2W , and the last term in (2.11) drops out.
We are left with

Fi

NW
= −1

4

(
1− U

2W

)2

− t2

1− (U/2W )2

− 4(U/2W )2t4[
1− (U/2W )2

]4 . (3.1)

Consider first only the quadratic dependence and com-
pare (3.1) with (2.12): Eq. (3.1) gives rise to a set of
curves on a plot of F/NW vs. kBT/W ≡ τ that de-
pend on the choice for U/Uc = U/(2W ). By contrast,
Eq. (2.12) specifies a single straight line, as shown in
Fig. 1. One notes that for U/Uc > 0.72 the curves in-
tersect the straight line at two points, while for smaller
values all curves lie below the straight line. In a standard
interpretation of free energy plots, the equilibrium con-
figuration is determined by the smaller of the two F/NW
values. Accordingly, where intersections occur, the itin-
erant state prevails at the lowest values of τ ≡ kBT/W ;
then there exists a mid range of reduced temperatures
where the localized configuration is stable; followed by a
higher temperature range where one again encounters the
delocalized state. This is the explanation for the reen-
trant metallic scenario. Where no intersections occur,
only the itinerant state is stable over the whole reduced
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temperature range. Let us note further that the range
of stability of the localized state widens and shifts to
higher τ values as U/Uc diminishes towards its critical
value near 0.74. Such a widening feature is unphysi-
cal since a decrease in U should engender a shrinkage
in the domain of localization. This finding signals a fail-
ure of the low T approximation to hold at larger values
of the upper crossover points; these particular intersec-
tions must therefore be disregarded. However, the lower
crossover points always fall within the applicable range
of the approximation, as was verified by detailed numeri-
cal calculations. Similar considerations apply to all later
calculations.

Fig. 1. Reduced Helmholtz free energies for itinerant
and localized electrons as a function of reduced temper-
ature τ for various U/Uc ratios with Uc = 2W ; cal-
culations based on the rectangular DOS specified by
Eq. (3.1), with omission of the last term. Note the dou-
ble intersections of the parabolas with the straight line
for U/Uc > 0.72. Calculations restricted to parabolic τ
dependence.

Comparable results based on the full expression,
Eq. (3.4) are shown in Fig. 2; relative to Fig. 1, all tran-
sitions are shifted to lower τ values.

Fig. 2. Plots similar to those of Fig. 1 for the RDOS
in which terms of order τ4 are included.

As a second way of interpreting the above findings,
we invoke the match of the two reduced free energies at
the transition point. This permits one to determine the
phase boundary separating the localized and the itiner-

ant configurations. One sets Fi = Fl to solve the re-
sulting quartic equation by finding the value of τ for a
given U/Uc at which (3.1) matches (2.12), for which pur-
pose we employed the Ferrari algorithm [12]. This proce-
dure generated the lower retrograde curve in Fig. 3 which
shows the reduced transition temperature as a function
of the reduced interaction energy†. For comparison we
also show in the upper curve the phase boundary when
only the term in t2 of Eq. (3.1) is retained. The range
of reduced temperatures over which the localized con-
figuration is stable is much larger compared to the case
where the term in t4 is included. The difference arises be-
cause the last term in (3.1) increases the negative slope of
Fi/NW and thereby diminishes the possibility of having
these curves intersect with the straight line of Eq. (2.12).

Fig. 3. Retrograde curves representing the phase
boundaries which separate the itinerant from the local-
ized regime when Fi/NW is specified for reduced tem-
peratures τ limited to quadratic and/or quartic expan-
sion terms. Calculations based on a rectangular DOS
function. The curves were cut off artificially at their
maximum values, beyond which the low temperature
expansion fails. Uc = 2W .

Consistent with the elimination of many upper
crossover points of Figs. 1 and 2, we were forced to cut off
the retrograde curves at their maximum values, beyond
which the curve assumes a negative slope. That the low
temperature approximation does fail beyond that point
was again verified by calculation. Also, we terminated
the curves for values U/(2W ) ≡ U/Uc > 1. Similar state-
ments apply to all retrograde curves presented later.

Several additional remarks are in order. According
to the retrograde curves, for U/Uc < 0.74 or 0.76 for
quadratic or quartic terms in t, the electron interactions
are sufficiently small so as to suppress any transition. In
the range 0.74 < U/Uc < 0.78 or 0.77 < U/Uc < 0.79 in
Fig. 3, raising the reduced temperature at a fixed value of

† The break between the lower and upper part of the curve (as well
as in all later retrograde curves) is an artifact of the calculation:
the computer program had difficulty matching T values in this
interval. However, the reader may readily fill in the gap with a
smooth interpolating curve.
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U/Uc generates a transition first from the metallic to the
insulating state and then a second change from the insu-
lating state back to the metallic region — the regime of
reentrant metallic behavior. Lastly, for 0.78 < U/Uc ≤ 1
or 0.79 < U/Uc ≤ 1 and with rising temperature only
a single transformation from the metallic to the insulat-
ing state is encountered. Here the electronic repulsions
become sufficiently strong that the metallic phase is con-
fined to very low reduced temperatures. A second in-
tersection may occur at very high temperatures where
the material may no longer be stable, and where the low
temperature approximation fails. Similar interpretations
obtain for all other retrograde curves presented below.

Lastly, the dependence of the transitions on the de-
gree of occupancy of the sites was investigated. It turns
out that for just very tiny departures from a one-to-one
match between electron numbers and sites in the crystal,
the insulating state is suppressed. This may be under-
stood on the basis that when sites remain unoccupied at
T = 0, electrons may in principle tunnel from their posi-
tions to neighboring, unoccupied sites; the truly insulat-
ing state is thereby suppressed. Double occupancies at
elevated temperatures simply produce more empty sites,
thereby adding to the electron transfers that prevail at
T = 0. Coincident with intuition, it requires only very
slight departures from complete occupation to destabilize
the insulating state. This is verified by detailed calcula-
tions based on the theory expounded in Ref. [6].

3.2. Semielliptical density of states

We next consider a somewhat more realistic case,
namely a normalized semielliptical density of states
(SEDOS), which peaks at the center of a symmetrically
disposed energy range; it is specified by

ρ(ε) =
4

πW

√
1−

(
2ε

W

)2

, (3.2)

where the kinetic energy is restricted to −W/2 ≤ ε ≤
W/2, and is zero outside the range. The density of
states function exhibits a maximum at the Fermi level
at µ = ε = 0. Thus,

ρ0 = 4/πW, ρ′0 = 0, ρ′′0 = −16/πW 3, W > 0. (3.3a)
Also, for a half-filled band, while taking account of spin
degeneracy, the average kinetic energy is given by

ε̄ = 2
∫ 0

−W/2

ερ(ε)dε = −2W/3π,

Uc = 8|ε̄| = 16W/3π ≈ 1.698W. (3.3b)
When these results are inserted in (2.11) one obtains

Fi

NW
= − 2

3π

(
1− U

Uc

)2

− (4/π) t2

1− (U/Uc)
2

−24
π

(U/Uc)2t4[
1− (U/Uc)

2
]4 +

28
5π

t4[
1− (U/Uc)

2
]3 . (3.4)

The above result may be compared with the correspond-
ing expression for the localized configuration, Eq. (2.12).

In Fig. 4 we show plots of Fi/NW vs. τ ≡ kBT/W ,
for a variety of choices of U/Uc, based on Eq. (3.4) and
compare these with the straight line relationship based
on Eq. (2.12). Note again the double crossover of the free
energy curves for the itinerant configuration across that
of the localized configuration (straight line), for larger
values of U/Uc > 0.81, with the same interpretation as
was given earlier. For values below this critical ratio only
the itinerant state is stable.

Fig. 4. Reduced Helmholtz free energies for itinerant
and localized electrons as a function of reduced tem-
perature τ for various U/Uc ratios; calculations based
on Eq. (3.4) for the semielliptical DOS. Note the dou-
ble intersections of the curves with the straight line for
U/Uc > 0.8. Expansions restricted to terms in τ2 and
τ4.

The boundary line between the itinerant and localized
states is found as before by equating Eqs. (3.4) and (2.12)
and numerically determining [12] the temperatures τ that
correspond to various assumed U/Uc values. The result-
ing retrograde curve is shown in Fig. 5, which is inter-
preted in a manner similar to that provided above. Re-
sults obtained by use of Eq. (3.4) with the t4 terms miss-
ing were published elsewhere [10]; the earlier curve is sim-
ilar in aspect to that of Fig. 5 and differs only in having a
larger maximum τ value. Comparison with Fig. 3 shows
that the stability region of the insulating state (inside
the retrograde domain) extends over a somewhat larger
U/Uc range than was the case for the RDOS situation;
also, the entire curve is shifted slightly downward on the
τ scale relative to Fig. 3.

3.3. Central peak density of states

This situation is illustrated by use of the function
ρ(ε) = b(ε2 − ε0)2, (3.5)

whose profiles are presented in Fig. 6 for several values
of the parameter ε0 at a fixed bandwidth W , which is
representative of a DOS that peaks weakly or strongly
in the central energy range, and has two adjacent dips
that vanish for ε = ±√ε0. Normalization is achieved by
setting

1 = b

∫ W/2

−W/2

(ε2 − ε0)2dε. (3.6)
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Fig. 5. Retrograde curve for the phase boundary sep-
arating the itinerant from the localized regime when
Fi/NW is specified for reduced temperatures involv-
ing τ limited to quadratic and quartic expansion terms.
Calculations based on semielliptical DOS functions.
The curves were cut off artificially at their maximum
values, beyond which the low temperature expansion
fails.

Fig. 6. Plot of the CPDOS function (3.5), (3.7a),
(3.7b), with ε0 = g0(W/2), showing the placement of
the minima relative to the band edges. The g0 values
increase with increasing size of the central peak.

For ease in future mathematical operations we define
a new parameter by

ε0 ≡ g0(W/2)2, 0 < g0 < 1, (3.7a)
where g0 adjusts the location of the minima in Fig. 6
relative to the end points at ±W/2, thus introducing a
new degree of freedom in deciding on the shape of the
DOS. Straightforward integration of (3.6) leads to the
result

b =
8

W 5

(
1
10
− 1

3
g0 +

1
2
g2
0

)−1

, (3.7b)

where W is the total width of the bare band. We also
require the average band energy for the half filled band,
symmetrically disposed about the Fermi energy at ε = 0:

ε̄ = 2b

∫ 0

−W/2

ε(ε2 − ε0)2dε =

−W

24
1− 3g0 + 3g2

0

[1/10− (1/3)g0 + (1/2)g2
0 ]

, (3.8)

from which one can obtain Uc/W = 8|ε̄|/W .
Next, we determine

ρ(0) = bε2
0 =

g2
0

2W [1/10− (1/3)g0 + (1/2)g2
0 ]

, (3.9a)

ρ′(0) = 0, (3.9b)

ρ′′(0) =
−8g0

W 3[1/10− (1/3)g0 + (1/2)g2
0 ]

. (3.9c)

Equation (2.11) may then be used to determine the re-
duced Helmholtz free energy for the present central peak
density of states (CPDOS) as

Fi

NW
=
−Uc

8W

[
1−

(
U

Uc

)]2

− (1/2)g2
0t2

[1/10− (1/3)g0 + (1/2)g2
0 ]

1
1− (U/Uc)

2

−4
(

U

Uc

)2
g4
0t4

(Uc/W ) [1− (U/Uc)2]
4

× 1

[1/10− (1/3)g0 + (1/2)g2
0 ]2

+
14g0t

4

5 [1− (U/Uc)2]
3 [1/10− (1/3)g0 + (1/2)g2

0 ]
.(3.10)

Attention is directed to the obvious requirement
0 < g0 < 1. This is also sufficient to guarantee that b in
Eq. (3.7b) and ε̄ in Eq. (3.8) remain positive and negative
respectively. Fi/NW now depends functionally on t and
parametrically on U/Uc as well as on g0. The introduc-
tion of this second parameter provides greater flexibility.
Uc/W is specified by Eq. (3.8).

Figure 7 provides representative plots of Fi/NW vs. τ
for a variety of U/Uc values (in a half-filled, nondegen-
erate band) at the fixed value of g0 = 0.7055, relative to
the same quantity for the localized configuration, with
the usual interpretation of the crossover phenomenon.
Again, falling values of U/Uc ultimately unduly broaden
the region of stability of the insulating phase, due to the
failure of the approximation scheme. However, the low
τ intersections fall within the bounds of the approxima-
tion. For U/Uc < 0.80 only the itinerant state prevails.
Figure 8 represents a similar plot in which U/Uc = 0.95
is fixed and g0 is varied as shown. The intercepts tend
to bunch into the range −0.04 > Fi/NW > −0.08. More
extensive calculations indicate that curves for which g0

decreases from unity to roughly g0 = 0.706 are shifted
downward on the τ scale, with a reversal to higher τ val-
ues for smaller g0. Figure 9 illustrates the retrograde
nature of the phase boundaries separating the itinerant
from the localized state for several g0 values. While the
general shape of the retrograde curves is not very sen-
sitive to the choice for g0, the τ values at the cutoff do
vary with g0. The range of U/Uc values for these curves
is comparable to that of Fig. 3, but the τ range is much
lower.



Thermodynamic Analysis of Metal–Insulator Transitions . . . 751

Fig. 7. Reduced Helmholtz free energies for itinerant
and localized electrons as a function of reduced tem-
perature τ for two sets of U/Uc ratios at the fixed value
g0 = 0.7055; calculations are based on the DOS of Fig. 6.
Let us note the double intersections of the curves with
the straight line for U/Uc > 0.8. Expansions restricted
to terms in τ2 and τ4.

Fig. 8. Reduced Helmholtz free energies for itinerant
and localized electrons as a function of reduced tem-
perature τ for various values of g0 at the fixed ratio
U/Uc = 0.95; calculations based on the DOS of Fig. 6.
Note the various double intersections with the straight
line. Expansions restricted to terms in τ2 and τ4.

3.4. Pseudogap density of states

Here we consider the pseudogap density of states
(PGDOS), DOS which has a minimum in the density
of states in the central energy range, namely

ρ = −c{(ε2 − ε)2 − [(W/2)2 − ε0]2}, (3.11)
whose profile is shown in Fig. 10; this is the previous DOS
in inverted form and mimics a band structure displaying

Fig. 9. Retrograde curves representing the phase
boundaries which separate the itinerant from the local-
ized regime when Fi/NW is specified for reduced tem-
peratures involving τ limited to quadratic and quartic
expansion terms. Calculations based on the DOS func-
tion (3.5) to (3.7b). The curves were cut off artificially
at their maximum values, beyond which the low tem-
perature expansion fails.

a pseudogap. The conventional normalization procedure
leads to the result

c =

[∫ W/2

−W/2

{
(ε2 − ε)2 − [(W/2)2 − ε0]2

}
dε

]−1

=
4

W 5

1
(1/5)− (1/3)g0

, (3.12)

where now

ρ =
4

W 5(1/5− g0/3)

×
[
(1− 2g0)

(
W

2

)4

+ 2g0

(
W

2

)2

ε2 − ε4

]
. (3.13)

It follows that

ρ(0) =
1− 2g0

4W (1/5− g0/3)
, ρ′(0) = 0,

ρ′′(0) =
4g0

W 3(1/5− g0/3)
. (3.14)

We also require for a half-filled band

ε̄ = 2c

∫ 0

−W/2

ερ(ε)dε = −W

8
1/3− g0/2
1/5− g0/3

. (3.15)

The reduced Helmholtz free energy for this model is then
obtained from Eq. (2.11) as

Fi

NW
= − Uc

8W

[
1−

(
U

Uc

)]2

−1
4

(1− 2g0)t2

(1/5− g0/3)[1− (U/Uc)2]

−1
2

(
U

Uc

)2 (1− 2g0)2t4

(Uc/W )(1/5− g0/3)2[1− (U/Uc)2]4

−7
5

g0t
4

[1/5− g0/3][1− (U/Uc)2]3
. (3.16)

To keep the coefficient of the t2 term positive, as re-
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Fig. 10. Sketch of the PGDOS function (3.11) and
(3.12), with ε0 = g0(W/2), showing the placement of
the maxima relative to the band edges. The g0 values
increase with increasing size of the central minima.

quired on physical grounds, we require that g0 < 1/2;
then the quantities (1/5− g0/3) and (1/3− g0/2) remain
positive as well. The resulting calculations are shown
in Fig. 11 and Fig. 12 as plots of Eq. (3.16) for a vari-
ety of g0 and U/Uc values; these are compared with the
relation for localized carriers. Corresponding retrograde

Fig. 11. Reduced Helmholtz free energies for itinerant
and localized electrons as a function of reduced tem-
perature τ for various U/Uc ratios at the fixed value
g0 = 0.45; calculations based on the DOS of Fig. 10.
Note the double intersections of the curves with the
straight line for U/Uc > 0.75. Expansions restricted
to terms in τ2 and τ4.

curves are shown in Fig. 13 for several g0 values. The fea-
tures encountered here differ from those for the CPDOS
case in being much less diffuse, with τ and U/Uc values
comparable to those of Fig. 3 for the RDOS.

4. General discussion

Aside from the earlier commentary some other obser-
vations are of interest. All retrograde curves displayed
above are similar in shape and differ principally in the
maximum values of τ beyond which the approximation
scheme fails. The set of acceptable τ values where the
“low temperature approximation” holds may be deter-
mined by noting the cutoffs where the retrograde curves

Fig. 12. Reduced Helmholtz free energies for itiner-
ant and localized electrons as a function of reduced
temperature τ for various g0 values at the fixed ratio
U/Uc = 0.95; calculations based on the PGDOS of
Fig. 10. Let us note the double intersections of the
curves with the straight line for U/Uc > 0.75. Expan-
sions restricted to terms in τ2 and τ4.

Fig. 13. Retrograde curves representing the phase
boundaries which separate the itinerant from the local-
ized regime when Fi/NW is specified for reduced tem-
peratures involving τ limited to quadratic and quartic
expansion terms. Calculations based on the PGDOS
function (3.16) for various g0 values. The curves were
cut off artificially at their maximum values, beyond
which the low temperature expansion fails.

achieve their maximum values. These τ ranges depend
on the assumed DOS functions. As a rough approxima-
tion, for the rectangular, semielliptical, and pseudogap
functions, where |ε̄| falls roughly halfway in the range
−W/2 ≤ ε ≤ 0 of occupied electron energy states, the
upper limit is τ ≤ 0.046. By contrast, for the central
peak functions, where |ε̄| is closer to the upper limit of
ε = 0, the upper limit falls close to the values τ ≤ 0.01 to
τ ≤ 0.013. This reflects the very different shapes in the
DOS curves and the corresponding mathematical rela-
tionships involved in the various reduced Helmholtz free
energy functions.

The cutoff values also provide an indication whether
the values of τ shown in the abscissae of the free energy
curves are physically reasonable. For the two ranges dis-
cussed above, select τ = 0.03 and τ = 0.01 as repre-
sentative values. The corresponding reduced tempera-
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tures kBT/W lie in the 3 × 10−2 to 10−2 range, which
is a reasonable ratio for thermal energies relative to bare
bandwidths.

From the reduced free energy curves one may also eas-
ily determine the reduced heat capacities at constant vol-
ume, CV , using the thermodynamic relation

CV (t)
NW

= t
d[Si(t)/NW ]

dt
. (4.1)

The entropy S may be read off from (2.11), based on the
relation Fi(t)/NW = Ei/NW −tSi(t)/NW . This re-
quires us: to single out the temperature-dependent terms
in (2.11); reduce their powers of t by one unit; carry out
the indicated differentiation; and multiply the resultant
by t. One thereby generates the electronic contribution
to the total heat capacity in terms of a factor that multi-
plies t and a factor multiplying t3. The first term repre-
sents a generalized Sommerfeld formulation for the elec-
tronic heat capacity, while the second term represents its
extension to the next higher power in reduced tempera-
ture. Details of these derivations, and specialization to
the various DOS function considered above, are left to
the reader.

Fig. 14. Low τ phase transitions. Sketch of a compos-
ite phase diagram for τ vs. U/Uc showing: the domain of
low temperatures where most materials undergo phase
transitions not accounted for by the present theory; the
regime of itinerant and localized electron configurations;
and the limited range where reentrant metallic behavior
is encountered. The upper sloping boundary of the insu-
lating regime represents a rough extrapolation beyond
the low-temperature approximation.

In confronting these calculations with experiment, one
should note that in almost all experimental studies, solids
undergo some type of phase transition at low tempera-
ture such as: magnetic ordering; crystallographic transi-
tions to lower symmetry; order–disorder transformations;
and the like. These engender concomitant changes in
the DOS that are not considered in the present theory.
Hence, the extremely low temperature metallic regime
specified by the above theory is not ordinarily experimen-
tally realized; one exception to this was noted earlier. In
Fig. 14 we provide a cartoon in which the horizontal line
represents the temperature below which, as indicated by
the shaded region, the present theory does not apply to
most experimental observations. We further delineate on

the upper right the approximate location of the phase
boundary that separates the insulating from the metal-
lic phase beyond the point where the low-temperature
approximation fails. The corresponding transition may
be either first order or may consist of a crossover regime.
Alternatively, the upper crossover point may require such
high temperatures that the solid is no longer stable, and
may therefore be unobservable. Pending the construc-
tion of a generalized theory, the only guide here is the
requirement that the domain of the localized configura-
tion should increase extensively as U approaches its cut-
off value Uc. Attention is also directed to the very limited
region of the phase diagram for which reentrant metallic
behavior is anticipated.

To summarize: We have examined the effects of
changes in the DOS and have extended the range of tem-
peratures for specifying the Helmholtz free energy of itin-
erant charge carriers in a half-filled, nondegenerate band.
By comparison with the Helmholtz free energy of local-
ized carriers we have also delineated the conditions under
which metal–insulator transitions are anticipated in the
low temperature approximation. This provides a gen-
eral framework for subsequent calculations of interest to
readers, either by extending the temperature range of ap-
plicability and/or by examining the effect of introducing
other types of DOS functions. In light of the above the
present theory is useful primarily in rationalizing obser-
vations of both reentrant metallic behavior and of any
metal–insulator transition with rising temperatures close
to absolute zero.
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Professor Józef SpaÃlek of the Jagiellonian University in
Kraków, Poland, for his pioneering insights that estab-
lished the theoretical methodology on which the present
paper is based.

This research was supported by award SI 06 021 of the
Faculty Senior Scientist Mentor Program of the Dreyfus
Foundation.

References

[1] H. Kuwamoto, J.M. Honig, J. Appel, Phys. Rev. B
22, 2626 (1980).

[2] X. Yao, J.M. Honig, T. Hogan, C. Kannewurf,
J. SpaÃlek, Phys. Rev. B 54, 17469 (1996).

[3] See e.g., M.S. Laad, L. Craco, E. Müller-Hartmann,
Phys. Rev. Lett. 91, 156402 (2003); A.I. Potayaev,
J.M. Tomczak, S. Biermann, A. Georges, A.I. Licht-
enstein, A.N. Rubtsov, T. Saha-Dasgupta, O.K. An-
dersen, Phys. Rev. B 76, 085127 (2007); G. Keller,
K. Held, V. Eyert, D. Vollhardt, V.I. Anisimov, Phys.
Rev. B 70, 205116 (2004).

[4] N.F. Mott, Proc. Roy. Soc. London A 62, 416 (1949).

[5] J. Hubbard, Proc. Roy. Soc. A 281, 401 (1964).
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