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In this paper, bound states energies and corresponding wave functions of H-shaped quantum wires are
calculated numerically in the presence of the external magnetic and electric fields. This analysis was done within
the Landau gauge. With a suitable definition of the external confinement potential, we present a numerical
algorithm to calculate the profile of the probability distribution of charge carriers. Our analysis shows that in the
presence of the external electric and magnetic fields, bound state properties of the carriers are sensitive functions
of an asymmetric parameter a = Wx/Wy which measures the relative width of the quantum well in two directions.
We also study many-body effect of the bandgap renormalization in this quasi-one-dimensional system within the
dynamical random phase approximation in its leading order.

PACS numbers: 71.35.Ee, 71.45.Gm

1. Introduction

A highly dense electron–hole plasma can be generated
in a wide variety of semiconductors by the optical pump-
ing. The band structure and the optical properties of
highly excited semiconductors generally differ from those
calculated for non-interacting electron–hole pairs due to
many-body exchange-correlation effects arising from the
electron–hole plasma [1, 2]. In recent years, quasi-one-
-dimensional semiconductor quantum wires (QW) have
been fabricated in a variety of the geometric shapes
with atomic scale definition, and their optical proper-
ties have been studied for potential device applications
such as semiconductor lasers [3, 4]. Recently, differ-
ent geometries of quantum wires, such as rectangular,
V-shaped, L-shaped and T-shaped quantum wires have
been fabricated and some of their electronic proper-
ties have been studied [4]. In addition, various exper-
imental techniques for fabrication and growth of these
structures have been developed [3–5]. Square quantum
well wires have been studied by Hu and Das Sarma [6].
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They have calculated the value of the bandgap renormal-
ization (renormalization of the fundamental gap struc-
ture due to many-body exchange-correlation effects) for
this structure within GW approximation. Excitonic ef-
fects in semiconductor quantum wires have been stud-
ied by Goldoni et al. [7]. They have studied the effects
of the Coulomb interaction on the linear and nonlin-
ear optical properties of both V-shaped and T-shaped
semiconductor quantum wires. Wang and Das Sarma
have proposed an elegant framework for numerical stud-
ies of the carrier induced many-body effects on the ex-
citonic optical properties of highly photoexcited one-
-dimensional quantum wire systems [8, 9]. Hwang and
Das Sarma have investigated the dynamical self-energy
corrections of electron–hole plasma due to electron–
electron and electron–phonon interactions at the band
edges of a quasi-one-dimensional photoexcited electron–
hole plasma within the GW approximation [10, 11]. Ri-
naldi and Cingolani have studied the optical properties
of quasi-one-dimensional quantum structures, specially
the case of V-shaped quantum wires [12]. Bener and
Haug have considered plasma-density dependence of the
optical spectra for quasi-one-dimensional quantum well
wires [13]. Tanatar has studied the band gap renor-
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malization in quasi-one-dimensional systems in a sim-
ple plasmon-pole (quasi-static) approximation [14, 15].
Güven et al. have studied the bandgap renormalization in
quantum wire system by incorporation of the dynamical
correlations and multisubband effects [16]. Luttinger liq-
uid behavior of a semiconductor quantum wire has been
studied by Bellucci and Onorato [17]. They have also
studied the effects of the magnetic field on low dimen-
sional electron systems focusing on the Luttinger liquid
behavior in a quantum wire [18]. In addition, they have
studied also the ballistic electron transport in a quan-
tum wire under the action of an electric field [19] and
quenching of the spin Hall effect in ballistic nanojunc-
tions [20]. As an application, they have studied the trans-
port through a double barrier in a large radius carbon
nanotube with transverse magnetic field [21]. Many par-
ticle aspects of a semiconductor quantum wire within an
improved random phase approximation has been stud-
ied by Ashraf and Sharma [22]. They have considered
structure factor, pair distribution function, screened im-
purity potential, and density of the screening charge and
exchange and screened exchange energies within an im-
proved random phase approximation.

On the other hand, T-shaped and L-shaped quantum
wires have been studied by some authors. For example,
Sedlmaier and his co-workers have studied the bandgap
renormalization of the modulation doped T-shaped quan-
tum wires. They have presented a self-consistent elec-
tronic structure calculation for this device [23]. Using
a density functional theory, Stopa has calculated the
electronic structure of a modulation doped and gated
T-shaped quantum wire [24]. Szymanska et al. have
studied the excitons in T-shaped quantum wires [25].
They have calculated energies and oscillator strength
for radiative recombination and two particle wave func-
tions for ground state exciton in a T-shaped quantum
wire. Lin et al. have found the dependence of the bound
states of L-shaped and T-shaped quantum wires to some
asymmetric parameter in an inhomogeneous magnetic
field [26]. They have proposed a simple model to ex-
plain the behavior of the magnetic dependence of the
bound state energies both in the weak and strong field
regions. Nozari and Madadi have studied numerically the
many-body properties and the bandgap renormalization
of V-shaped and T-shaped quantum wires within the dy-
namical random phase approximation [27, 28]. Ballistic
transport through coupled T-shaped quantum wires has
been studied by Lin et al. [29].

As another possible geometry of low dimensional sys-
tems, H-shaped electronic systems have been considered
and their many-body electronic properties have been
studied by some authors. These type of quasi-one-
-dimensional system could be imagined as two T-shaped
quantum wire joint together. Shin and co-workers have
studied quantum transport in the H-shaped quantum
wire and also a ring structure [30]. They have studied
numerically the transport properties of H-shaped quan-
tum wire structure by using the mode matching tech-

nique. They have reported the existence of anomalous
Hall resistance plateaus in this structure with relatively
low magnetic fields as precursors of integer Hall plateaus.
Hankiewicz et al. have studied the manifestation of the
spin Hall effect in a two-dimensional electronic system
with the Rashba spin–orbit coupling via dc-transport
measurements in a realistic H-shaped structure [31]. De-
signing of H-shaped micromechanical structure has been
studied by Arhaug and Soeraasen [32].

Our investigation shows that there is no other concrete
study of the H-shaped quantum wire structure in the
existing literature. Obviously, an analytical-numerical
study of this special structure is important to fill the
existing gap. Especially, our investigation in the litera-
ture shows that bound states of H-shaped quantum wires
and many-body effects such as bandgap renormalization
of these low dimensional systems have not been studied
yet. Therefore, in this paper we consider the geometry of
H-shaped quantum wires and by a suitable analytical def-
inition of quasi-one-dimensional H-shaped confinement
potential, we propose a numerical scheme for calculating
the bound states energies and wave functions of charge
carriers in the presence of external electric and magnetic
fields and within the Landau gauge. Application of the
external electric and magnetic field is itself an impor-
tant step in this regard since in electronic devices based
on these structure we cannot neglect the effects of these
fields. We obtain the profile of charge carriers distribu-
tion (probability distribution) in the presence of external
electric and magnetic fields. As an important nonlin-
ear optical effect, the many-body exchange-correlation
induced bandgap narrowing in this type of the quantum
wire will be studied within the leading order dynamical
random phase approximation. Then we compare the re-
sults of our calculations in quasi-static and GW approx-
imation.

This paper is organized as follows: Sect. 2 is devoted
to formulation of the problem and definition of the con-
finement potential mathematically. In Sect. 3 we give a
short but complete overview of the theory of bandgap
renormalization in a general quasi-one-dimensional semi-
conductor system. Some numerical details are given at
the end of this section. Section 4 provides numerical
results of our study and their interpretation, while the
numerical scheme of our calculations based on the finite
difference algorithm is presented in Appendix. The re-
sults of each step are shown by figures. Finally, summary
and conclusions are given in Sect. 5.

2. The setup

The geometry of a typical H-shaped quantum wire is
shown in the Fig. 1. This structure can be thought as two
distinct T-shaped quantum wire joint together. The typ-
ical values of Wx and Wy are of the order of 50–100 nm.
We study many-body effects originating from the opti-
cal non-linearities in this quasi-one-dimensional system in
the presence of the external electric and magnetic fields.
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Fig. 1. The geometry of the H-shaped quantum wire.

The electric field is assumed to be directed along the x-
axis and its typical value is of the order of a few volt per
centimeter, V/cm. The presence of the magnetic field is
in such a way that the Landau gauge, A = (0, Bx, 0) is
satisfied. The Hamiltonian of an electron in this config-
uration can be written as follows:

H =
1

2m

[
p2

x + (py − eBx)2
]
− eEx, (1)

where e and m are electron’s charge and mass, respec-
tively. The Schrödinger equation of this electron with
wave function Ψ(x, y) can be written as follows:

−
(

∂2

∂x2
+

∂2

∂y2
− 2ieB

~
x

∂

∂y

)
Ψ(x, y)

+

(
eB

~

)2

x2Ψ(x, y)− 2meE

~2
xΨ(x, y) =

2m

~2
λΨ(x, y), (2)

where λ stands for eigenvalues of electron energy, E rep-
resents the value of the electric field and B is the value of
the magnetic field. To solve this eigenvalue problem, we
need the boundary conditions which are given by the ex-
ternal confinement potential. The geometry of H-shaped
quantum wire as shown in Fig. 1, suggests the following
definition of confinement potential which contains appro-
priate boundary conditions based on H-shaped geometry

V (x, y) =





0 if





−∞ < x < +∞, − 3
2Wy ≤ y ≤ −Wy,

−∞ < x < +∞, Wy ≤ y ≤ 3
2Wy,

−Wx

2 ≤ x ≤ Wx

2 , −Wy ≤ y ≤ Wy,

∞ elsewhere.

(3)

It should be emphasized that the H-shaped geometry is
the transverse section of the wire and that the free car-
rier propagation direction is perpendicular to the plane
of Fig. 1. With this definition of the confinement poten-
tial which provides the required boundary conditions, we
solve Eq. (2) numerically to find eigenvalues and eigen-
functions of bound states of electron in the presence of
the electric and magnetic fields. Our numerical strategy
is based on the finite difference algorithm and is pre-
sented in Appendix. The results of these calculations for

different external field configurations and variety of the
possibilities are shown in Figs. 2, 4, 6, 7 and 9 and will
be interpreted in Sect. 4. Also energy profiles of these
single-particle states are shown in Figs. 3, 5, 8 and 10 for
different electromagnetic (EM) field configurations and
different asymmetry parameter. The wave functions ob-
tained in this section will be used to study the bandgap
renormalization of the H-shaped quantum wire in the
next section.

3. Many-body and nonlinear optical effects in
H-shaped quantum wires

There are several nonlinear optical and many-body ef-
fects in the quasi-one-dimensional semiconductor systems
which originate from the exchange-correlation effects in a
dense excited plasma. One of the most important many-
-body effect in a high density electron–hole plasma is
a density-dependent renormalization of the fundamental
band gap of the semiconductor which affects an increas-
ing absorption in the spectral region below the lowest ex-
citon resonance. The exchange-correlation correction of
the fundamental band gap due to the presence of free car-
riers (electrons in the conduction band and holes in the
valence band) in the system is referred to as the band gap
renormalization effect. Optical nonlinearities, which are
strongly influenced by the screened Coulomb interaction
in the electron–hole plasma, are typically associated with
the band gap renormalization phenomenon. In which fol-
lows, we use the two-band (a conduction and a valence
band) model to study the one-dimensional electron–hole
system. We neglect the effects of higher subbands and
degeneracies in valence bands. We assume that electrons
and holes densities are constant in time. We also assume
that only one kind of electron and one kind of hole with
parabolic isotropic dispersion exist. This should be an
adequate approximation for calculating the renormaliza-
tion at the band edge especially for semiconductor struc-
ture such as GaAs. In this situation, Hamiltonian of the
system can be written as (see for instance [8, 9, 33]):

H =
∑

k

[(
E0

g +
k2

2me
c†kck +

k2

2mh
d†kdk

)]

+
1

2L

∑

k,k′,q

[
Vc,ee(q)c

†
k−qc

†
k′+qck′ck

+ Vc,hh(q)d†k−qd
†
k′+qdk′dk

+ Vc,eh(q)c†k−qckd†k′+qdk′

]
. (4)

In this equation which contains all information about the
one-dimensional system under consideration, ck and c†k
are annihilation and creation operators for conduction
electrons, respectively. Also dk and d†k are annihilation
and creation operators for valence band holes. E0

g is the
direct band gap between the top of the valence band and
the bottom of the conduction band. Vc,ij show the pos-
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sible three Coulomb interactions between electrons and
holes. Let us note that the two first interactions lead to
electron–hole quasi-particle self-energies while the third
one leads to the production of excitonic bound states.
Let us note also that this Hamiltonian consists of spin
effects, although spin index is not included explicitly.

The Coulomb interaction matrix element in one-
-dimensional quantum wire is given by the following re-
lation [8]:

Vc,ij(q) =
e2

ε0

∫ +∞

−∞
dxdx′

∫ +∞

−∞
dydy′

∫ +∞

−∞
dz

× e−iqz|φi(x, y)|2|φj(x′, y′)|2√
z2 + (y − y′)2 + (x− x′)2

=
2e2

ε0

∫ +∞

−∞
dxdx′

∫ +∞

−∞
dydy′|φi(x, y)|2

× |φj(x′, y′)|2K0

(
q
√

(x− x′)2 + (y − y′)2
)
, (5)

where φi(x, y) is the quantum wire confinement wave
function for the lowest eigenstate of electrons or holes.
The exact form of these eigenfunctions depends on the
geometry and details of confinement potential. In our
case with H-shaped confinement potential, these eigen-
functions will be calculated numerically based on the al-
gorithm presented in the previous section. K0(x) is the
zeroth-order modified Bessel function of the second kind.
In the setup of our one-dimensional quantum system, we
have assumed that carriers are free to move in the z di-
rection but x and y are directions of confinement.

Band gap renormalization in the quasi-static approxi-
mation is given by [14, 15]:

∆i(k) =
∑

k′

{
− Vs(k − k′)ni(εi,k)

+
1
2

[
Vs(k′)− Vc(k′)

]}
, (6)

where

Vs(k) ≡ Vs(k, ω = 0) =
Vc(k)

ε(k, ω = 0)
(7)

is the statically screened Coulomb interaction and
ni(εi,k) is the fermion momentum distribution function

ni(εi,k) =
1

eβ(εi,k−µi) + 1
, (8)

where εe,k ≡ k2

2me
+ E0

g and εh,k ≡ k2

2mh
are the bare en-

ergies of electron and hole in their respective bands and
µi is the chemical potential. ε(k, ω) as the dynamical di-
electric function is defined as follows:

ε(k, ω) = 1− Vc(k)Π 0
e (k, ω)− Vc(k)Π 0

h (k, ω) =

1− Vc(k)
∑

i=e,h

mi

πk

× ln
(

ω2 − ((k2/2mi)− kvF,i)2

ω2 − ((k2/2mi) + kvF,i)2

)
, (9)

where vF,e/h is the Fermi velocity of electrons/holes at
Fermi momentum in the conduction/valence band. Let

us note that we have adopted single-particle states to
treat random phase approximation using the dielectric
function (9) which is calculated based on the single-
-particle states obtained in the previous section. The
results of these calculations for single-particle states are
shown in the figures and will be discussed in the forth-
coming arguments.

In the one-loop GW approximation with dynamically
screened interaction one has [8, 33]:

Σi(k, z) = − 1
β

∑

k′,z′
Vs(k − k′, z − z′)Gi(k′, z′) =

− 1
β

∑

k′,z′

Vc(k − k′)
ε(k − k′, z − z′)

Gi(k′, z′), (10)

where

Gi(k, z) =
1

z − εi,k − Σi(k, z) + µi
, i = e, h (11)

and Σe/h(k, z) is the self-energy of electrons/holes defined
in GW approximation. To avoid multipole structure in
the Gi(k, z), we approximate Σi(k, z) by the momentum-
-dependent bandgap renormalization ∆i(k). Using the
approximation ∆i(k) = Σi(k, εi,k − µi), we find the fol-
lowing single pole electron–hole Green function [8, 33]:

Gi(k, z) ∼ 1
z − εi,k −∆i(k) + µi

, i = e, h. (12)

The above formalism provides a suitable framework for
our numerical calculation of bandgap renormalization.
To proceed further, we should calculate the screened
Coulomb potential. We emphasize that all numerical
calculations for dielectric function, screened Coulomb po-
tential and the bandgap renormalization are based on the
single-particle states calculated numerically in Sect. 2.
Now, using Eq. (5), the screened Coulomb potential can
be written as follows:

Vc(k) =
2e2

ε0

∫
dxdy

∫
dx′dy′K0|kR||Ψ(x, y)|2

× |Ψ(x′, y′)|2,
or using rescaled coordinates x̃i ≡ xi/L and x̃i

′ ≡ x′i/L
we find

Vc(k) = λ
2e2

ε0
L4

∫
dx̃dỹ

∫
dx̃′dỹ′K0|kR||Ψ(x̃, ỹ)|2

× |Ψ(x̃′, ỹ′)|2, (13)
where λ is rescaling factor equal to 10−18/m2 and kR =
k
√

(x− x0)2 + (y − y0)2. Using Ψ(x, y) computed nu-
merically in the previous section, we solve the integral
of Eq. (13). The screened potential is calculated using
the ground state wave function as a function of k. Fig-
ure 11 shows the result of this calculation for different
values of the relative width of the confinement potential.
In this figure, Vc(k) is normalized by 2e2/ε0 and the k is
normalized to kL.

In the next step we calculate the bandgap renormaliza-
tion in both quasi-static and GW approximation for this
setup. To do this end, we should calculate dielectric func-
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tion, single-pole Green function for electron and Green
function for hole numerically. To calculate these quan-
tities we use single-particle state presented in Sect. 2.
In addition, we use the rescaled quantities k̃ = kL and
ω = ω̃ × 1016. To calculate bandgap renormalization in
this configuration, we define the rescaled βe and µ0

e , re-
spectively, as β~2/2m∗

eL
2 = β(574.5/L2) and µ0

eβ. For
simplicity and without loss of generality, we can set
L = Wy where Wy is the width of the quantum well
in the y direction in nm. For holes, we also define the
rescaled βh and µ0

h as βh = βe

(m∗
e

m∗
h

)
and µ0

h = µ0
e

(m∗
e

m∗
h

)
,

respectively. In all of our computations in this paper, we
have assumed that the ratio m∗

h/m∗
e is equal to 0.3 and

m∗
e ≈ 0.067me. Then we set ω̃ = 0 and using Eq. (7),

we calculate the bandgap renormalization in both quasi-
-static and GW approximations at temperature T = 0.
The results of these calculations for both quasi-static and
GW approximations are shown in Fig. 12. As this figure
shows, the absolute values of the bandgap renormaliza-
tion in GW approximation are smaller than in the case
with quasi-static plasmon-pole approximation. Typical
values of bandgap normalization are in the range of 10–
30 meV depending on the temperature and impurities
in the system. Because of consideration of more quan-
tum field theoretical details, GW approximation gener-
ally gives results which have better agreement with ex-
perimental results [10, 11]. In fact, generally the dynam-
ical correlation effects tend to reduce the magnitude of
the bandgap renormalization, especially when compared
with the quasi-static approximation results, and bring
the calculated values to be closer to the experimental
results.

4. Results and discussions

Probability distribution of charge carriers in the ab-
sence of the external electric and magnetic fields are
shown in Fig. 2 where the asymmetric parameter a =
Wx/Wy has been set equal to 0.8. This figure empha-
sizes the central role played by the geometric shape of
the confinement potential. In the absence of the exter-
nal electric and magnetic fields, carrier distribution obeys
the symmetry of the confinement potential. Variation of
asymmetric parameter changes the profile of the charge
distribution in such a way that the case with a = 1 has
maximum symmetry and any change of the relative width
leads to the antisymmetric distribution. Figure 3 shows
the variation of the ground state energy of charge carriers
versus the inverse of the asymmetric parameter a. Vari-
ation of the relative width leads to the conclusion that
smaller relative width leads to smaller ground state en-
ergy. Now, let us suppose that we turn on a uniform mag-
netic field. In the absence of electric field, the distribu-
tion of charge carriers is given by Fig. 4. The role played
by the asymmetric parameter is a reduction of the prob-
ability amplitude when the width of the well increases in
x or y direction. Variation of the ground state energy
versus the intensity of the magnetic field is depicted in

Fig. 5 for two different values of the asymmetric param-
eter. For a fixed well width in the y direction, when the
width of the well in the x direction increases, the value
of the ground state energy will increase. Now we turn
off magnetic field and apply a uniform electric field in
the x direction. The profile of probability amplitude for
charge carriers distribution is shown in Fig. 6 for a = 0.8.
Figure 7 shows the cross-section of this distribution from
top view. The probability amplitude has a Gaussian pro-
file and is shifted toward the right hand side of the well.
This shift is a function of the electric field intensity. The
probability profile does not obey the geometric shape of
the confinement potential due to preferred direction de-
fined by the presence of the electric field. The energy of
the ground state versus the intensity of the electric field
is depicted in Fig. 8. As this figure shows, ground state
energy decreases with increasing the electric field inten-
sity. This is not surprising since external electric field
tends to decouple electrons and holes from each other
leading to less bounded exciton state. In the general case
where both electric and magnetic fields are present, the
asymmetric behavior explained above will be enhanced
in some respects. Figure 9 shows the space variation of
the probability amplitude with a = 0.8. In the presence
of the constant electric and magnetic fields, the pick of
the graph describing charge carriers distribution shifts to
the positive direction of the x axis. This feature causes
the carriers concentration in such a way that these car-
riers distributions do not obey the external confinement
potential symmetry. What is more, the intensity of the
electric field results in the larger shift of the distribution
peak to the right hand side of the x axis. The presence
of the constant magnetic field causes the anisotropy in
the profile of the probability distribution of the carriers.
Figure 10 shows the variation of the ground state energy
versus the variation of the electric field when the mag-
netic field is supposed to be constant. More intensity
of the electric field leads to the more reduction of the
bound states energies. This resembles the linear Stark
effect in the elementary quantum mechanics. In the lan-
guage of many-body effects in the dense plasma within a
quasi-one-dimensional semiconductor, application of the
intense electric field results in the weaker excitonic states.
Therefore, the presence of the external electric and mag-
netic fields will shift the location of the maximum concen-
tration of carriers and in this case there is an apparent
asymmetry in the profile of carriers distribution. This
point can be used in fabrication of microelectronic de-
vices based on quantum wires.

As another step, we have proposed a numerical frame-
work to calculate the screened Coulomb potential and
the values of the bandgap energy renormalization in
this H-shaped quantum wire within two different ap-
proximations: quasi-static and dynamical random phase
approximation in its leading order dynamical screening
(GW) approximation. We have evaluated the single-
-particle self-energies for both electrons and holes in the
dynamical plasmon-pole approximation (PPA) and the
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Fig. 2. The probability amplitude of charge carriers
distribution for ground state of H-shaped quantum wire
at zero external EM fields. The asymmetry parameter
was chosen to be a = Wx/Wy = 0.8.

Fig. 3. The absolute values of the ground state energy
(in eV) versus the inverse of the asymmetry parameter
at zero external fields strength.

Fig. 4. The probability amplitude of charge carriers
distribution for ground state of H-shaped quantum wire
in the presence of an external magnetic field (and zero
electric field). The asymmetry parameter was chosen to
be a = Wx/Wy = 0.8.

Fig. 5. The absolute values of the ground state energy
versus the intensity of the external magnetic field for
different values of asymmetry parameter.

Fig. 6. The probability amplitude of charge carriers
distribution for ground state of H-shaped quantum wire
in the presence of an external electric field (and zero
magnetic field). The asymmetry parameter was chosen
to be a = 0.8.

Fig. 7. The cross-section of the probability ampli-
tude of charge carriers distribution for ground state of
H-shaped quantum wire in the presence of an external
electric field (and zero magnetic field). The asymmetry
parameter was chosen to be a = 0.8 and distances are
in nanometers.
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Fig. 8. The absolute values of the ground state en-
ergy versus the intensity of the external electric field for
a = 0.8 and B = 0.

Fig. 9. The probability amplitude of charge carriers
distribution for ground state of H-shaped quantum wire
in the presence of both electric and magnetic fields. The
asymmetry parameter was chosen to be a = 0.8.

leading order dynamically screened interaction or GW
approximation to obtain the electron and hole renor-
malized Green functions. This self-energy calculation
gives us the band gap renormalization due to exchange-
-correlation effect. For comparison, we also calculated
the bandgap renormalization obtained by the quasi-static
calculation in both static random phase approximation
and static plasmon-pole approximation. Let us note
that quasi-static approximation works well in two- and
three-dimensional systems but fails completely in one-
-dimensional systems. This is the case because the elec-
trons in one-dimensional system suffer very strong in-
elastic scattering effects by virtue of the restricted phase
space. However, we have used this approximation only
for comparison purposes. It is important to note that
by rescaling procedure we have adopted here, we have
fixed the geometry of the H-shaped quantum wire. Ac-
tually, one should consider the possibility for variation
of the geometrical shape, too. However, we have noticed
that by a change in the geometrical shape via variation of
the parameter L = Wy has no considerable effect on the

Fig. 10. The absolute values of the ground state en-
ergy versus the intensity of the external electric field for
a = 0.8 and B = 20 (a constant magnetic field).

main physical results obtained and focused on here. Fig-
ure 11 shows the screened Coulomb potential calculated
based on the random phase approximation in its leading
order and for different values of the asymmetry param-
eter. Exchange-correlation many-body effects mediate
the bare Coulomb interaction. Based on the different
width of the confinement potential, screened Coulomb
potential varies with geometrical characteristics (such as
the relative width) of the confinement potential. As
Fig. 11 shows, by increasing the asymmetry parameter,
the screened Coulomb potential will grow but its over-
all behavior with respect to the wave number does not
change. Figure 12 shows the calculated band gap renor-
malization in the quasi-static and dynamical random
phase approximations. To calculate bandgap renormal-
ization, we first calculated the electron/hole single-pole
Green function and then using the formalism of both one-
-loop GW approximation and quasi-static plasmon-pole
approximation we calculated the values of the bandgap
renormalization in temperature T = 0. Let us note
that we have considered L dependence of the bandgap
renormalization, however it can be translated to bandgap
renormalization versus carrier densities as well. Figure 12
also compares the results of the bandgap renormalization
in GW and plasmon-pole approximations. As this figure
shows, for a fixed value of L, GW approximation gives
smaller absolute values of the band gap renormalization.
Generally, GW approximation gives more reliable result
in comparison with experimental data [5].

Let us note also that we have focused on the variation
of the geometrical shape of the confinement potential by
variation of L. As the figures (for instance Fig. 1) show,
there are other possibilities for variation of the geometri-
cal shape of the external confinement potential. However,
the general behaviors are the same as presented here.
There are some restrictions on our calculations which can
be summarized as follows: the many-body treatment has
the disadvantage that, for bandgap renormalization, it
commonly ignores geometrical factors such as the quan-
tum confined Stark effect whose relevance is structure
specific. In other words, the numerical results for differ-
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Fig. 11. The calculated screened Coulomb potential
versus the wave number for different asymmetry param-
eter. The screened potential is normalized by 2e2/ε0

and the k is normalized by L = Wy.

Fig. 12. Calculated band gap renormalization in
H-shaped quantum wire within dynamical random
phase (GW) approximation (upper curve) and quasi-
-static plasmon-pole approximation (lower curve). The
screened potential is normalized by 2e2/ε0 and L = Wy.

ent types of the confinement potential of the H-shaped
quantum wire may be geometry dependent in general.
Furthermore, in the exciton problem, many-body the-
ory treats screening within the linear approximation and,
generally, influence of the bound electron on the free elec-
trons is not fully included. In particular, the orthogo-
nality of the free electron states with the bound state,
which increases its importance in lower dimensional sys-
tems, are typically not included. On the other hand, the
complete treatment of the problem should consider the
effects of several subbands [8]. Let us note that in the rest
of the calculation of bandgap renormalization presented
here, we have used the two-band (one conduction band
and one valence band) model and we have neglected the
effects of higher subbands and degeneracies in valence
bands. We also assumed that electrons and holes den-
sities are constant in time. We are going to include the
effect of higher excitations in the bandgap renormaliza-
tion in our forthcoming study. Also, we shall study the

effect of external electric and magnetic fields on the val-
ues of the bandgap renormalization in our future study.
These are important issues which need more attention
and there is an explicit gap in literature in this field.

5. Summary and conclusions

Our numerical procedure to study bound states and
many-body effects in the H-shaped quantum wire struc-
ture has the following results:

• The distribution of the probability of the charge
carriers in the ground state of the H-shaped quan-
tum wire in the absence of electric and magnetic
fields has a symmetric shape obeying the geometric
shape of the confinement potential. This distribu-
tion has its maximum at the center of each arm and
decreases with distance from the center. The rela-
tive width of the confinement potential, the asym-
metric ratio a = Wx/Wy has considerable effect on
the profile of this distribution.

• In the presence of a constant magnetic field, the dis-
tribution of the charge carriers becomes oscillatory
both in x and y directions. Increasing the strength
of the magnetic field leads to the reduction of the
ground state energy. The role played by the asym-
metric parameter is given by the reduction of the
probability amplitude when the width of the well
increases in the x or y directions.

• The situation for the case of non-vanishing electric
field (in the absence of the magnetic field) resem-
bles the Stark effect in a low dimensional system.
The probability amplitude has an oscillatory be-
havior with larger wavelength of the oscillations. In
this case although the probability amplitude has a
Gaussian profile, it is shifted toward the right hand
side of the well shown in Fig. 1. This shift is a func-
tion of the electric field intensity. The probability
profile does not obey the symmetry of the geomet-
ric shape of the confinement potential due to the
preferred direction defined by the presence of the
electric field.

• In the presence of both electric and magnetic fields
there are oscillations in probability distribution
both in x and y directions, but in this case the
probability distribution is not symmetric. In the
presence of constant electric and magnetic fields,
the peak value of the probability amplitude will be
shifted toward the positive direction of the x axis.
This causes the carriers to be concentrated in such
a way that they do not obey the external confine-
ment potential symmetry. Larger intensity of the
electric field results in larger shift of the distribu-
tion peak to the right hand side of the x axis. The
presence of the constant magnetic field causes an
anisotropy in the profile of the probability distri-
bution of the carriers, since it apparently breaks



Many-Body Effects and Bandgap Renormalization . . . 729

the local rotational symmetry in the center of each
arm.

• Screened Coulomb potential of the H-shaped ex-
ternal confinement is a sensitive function of the
asymmetry parameter but its overall behavior un-
der variation of the wave number is the same for
other possible geometries of quasi-one-dimensional
systems. The calculated bandgap narrowing for the
H-shaped confinement potential in the absence of
the electric and magnetic fields and within quasi-
-static and dynamical random phase approximation
shows a typical gap narrowing of the order of few
meV. This is supported from other studies of band
gap narrowing in quasi-one-dimensional semicon-
ductor systems [4, 6]. We have shown that GW
approximation gives smaller absolute values of the
bandgap renormalization. The dynamical random
phase GW approximation leads to more reliable re-
sult than quasi-static approximation in comparison
with experiments.

• Our analysis has some restrictions that should be
considered in a more complete study: essentially,
the many-body treatment has the disadvantage
that for bandgap renormalization it commonly ig-
nores geometrical factors such as the quantum con-
fined Stark effect which is a structure dependent
effect. In our study, the influence of the bound
electrons on the free electrons is not fully included
in the analysis. A complete treatment of the prob-
lem should consider the effects of several subbands.
We have neglected the effects of higher subbands
and degeneracies in valence bands. We also as-
sumed that electrons and holes densities are con-
stant in time. In our forthcoming paper which
will be reported soon, we will include the effect of
higher excitations in the bandgap renormalization
and we shall study the effect of external electric
and magnetic fields on the values of the bandgap
renormalization. These are important issues which
need more attention and there is an explicit gap in
literature in this respect.

In summary, we can conclude that in the presence of
electric and magnetic fields, H-shaped quantum wires
bound states characteristics are sensitive functions of an
asymmetric parameter a = Wx/Wy and the strength
of the electric and magnetic fields. The case of non-
-vanishing electric and magnetic fields induces an intrin-
sic inhomogeneity in the quasi-one-dimensional system.
Many-body effects due to plasma screening and resulting
optical nonlinearities are also dependent on the asymmet-
ric parameter of quasi-one-dimensional confinement po-
tential. Among these nonlinear optical effects, bandgap
renormalization of fundamental band edge has been stud-
ied numerically in this paper. The absolute values of
the bandgap renormalization in GW approximation are
smaller than the quasi-static plasmon-pole result. Typi-
cal values of this normalization are few meV depending

on the temperature and impurities in the system. GW
approximation generally gives results which have better
agreement with experiment.

Appendix: numerical strategy

We use the finite difference algorithm (see for in-
stance [34]) to solve our partial differential Eq. (2) with
boundary conditions imposed by H-shaped confinement
potential as defined in relation (3). The most straight-
forward refinement method replaces the differential equa-
tion with a finite difference equation. It replaces all
derivatives with approximate expression as the follow-
ing familiar form:(

dy

dx

)

x=xn

≈ yn+1 − yn

h
,

(
d2y

dx2

)

x=xn

≈ yn+1 − 2yn + yn−1

h2
, (14)

where the mesh chosen to be equally spaced and given
by h = xk−x0

N+1 with xk = x0 + kh and k = 1, 2, . . . , n + 1.
We first rescale the Schrödinger equation and the con-
finement potential. We define the rescaled value of x and
y as x̄ ≡ x/Wx and ȳ ≡ y/Wy where Wx and Wy are the
width of the well in the x and y directions, respectively.
Now the rescaled Schrödinger equation can be written as
follows:

−
(

1
Wx

∂2

∂x̄2
+

1
Wy

∂2

∂ȳ2
− 2ieBWx

~Wy
x̄

∂

∂ȳ

)
Ψ(x̄, ȳ)

+

(
eBWx

~

)2

x̄2Ψ(x̄, ȳ)

−2meEWx

~2
x̄Ψ(x̄, ȳ) =

2m

~2
λΨ(x̄, ȳ). (15)

Using the finite difference algorithm, this equation can
be written as follows:

−
(

Ψi+1,j − 2Ψi,j + Ψi−1,j

∆x

+ a2 Ψi,j+1 − 2Ψi,j + Ψi,j−1

∆y

)

+
2ieaBW 2

x

~
x̄i

Ψi,j+1 −Ψi,j−1

2∆y

+

(
eBW 2

x

~

)2

x̄i
2Ψi,j − 2meEW 3

x

~2
x̄iΨi,j

=
2mW 2

x

~2
λΨi,j , (16)

where a = Wx/Wy is the relative width of the H-shaped
quantum wire. We do discretize the x and y axes to dis-
crete space dx = 0.1 and dy = 0.1, therefore Eq. (16) can
be written as a matrix equation
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Hφ = Eφ, (17)
where H and φ are the Hamiltonian matrix and the state wave functions array which are defined as follows:

φ =




(
...
)




...
φ(xi, yj)

φ(xi+1, yj)
...







...
φ(xi, yj+1)

φ(xi+1, yj+1)
...




(
...
)




, (18)

H =







. . .







. . . 0 0

0 − a2

∆2
y

+
iWxeaBx̄i

~ 0

0 0
. . .




0 0




. . .







. . .
. . . 0 0

. . . 2

(
1

∆2
x

+ a2

∆2
y

)
+

(
eW2

xB

~

)2
x̄2

i +
2meW3

xE

~2 x̄i
−1
∆2

x
0

0 −1
∆2

x
2

(
1

∆2
x

+ a2

∆2
y

)
+

(
eW2

xB

~

)2
x̄2

i +
2meW3

xE

~2 x̄i

. . .

0 0
. . .

. . .







. . .


 0

0




. . . 0 0

0 − a2

∆2
y
− iWxeaBx̄i

~ 0

0 0
. . .







. . .







. . .




0 0




. . .







. . .







, (19)

The error of computation of φ(x, y) is of the order of
O(dx2). We diagonalize the Hamiltonian matrix and cal-
culate the bound states energies and wave functions nu-
merically. We use MATLAB package since it uses tech-
niques that are more efficient than the Jacobi rotations
and that can be applied to asymmetric or even complex
matrices as well as to the more common real symmetric
situations. The result of these numerical calculations of
single-particle state are used in the calculation of the di-
electric function, screened confinement potential and the
bandgap renormalization.
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