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In this paper the magnetic behavior of triple layer thin film was investigated by Monte Carlo simulations.
We fixed an antiferromagnetic arrangement of the lattice spins for the basal layer of the film and we studied the
basal layer magnetic ordering influence on the two other layers, by calculating the out-of-plane and the in-plane
magnetization, the out-of-plane and the in-plane magnetic susceptibility and the specific heat. We found out five
magnetic ordering phases of the sample: ferromagnetic, antiferromagnetic, mixed phase ordering, paramagnetic
and XY -like magnetic ordering of the spins, respectively.

PACS numbers: 75.10.Hk, 75.70.Ak, 75.40.Mg

1. Introduction

For the last years there has being an increasing inter-
est in ultrathin magnetic films area [1–3] due to their
important technical applications [4]. The magnetiza-
tion processes in ultrathin films, used in data storage
devices technology, are dominated by the balance be-
tween the surface and the shape anisotropies: the surface
anisotropy arises from the symmetry breaking in the di-
rection perpendicular to the film plane [5, 6] and favors
a magnetization along this direction, whereas the shape
anisotropy, which results from the long-range dipole–
dipole interactions, favors the in-plane magnetization.
A lot of magnetic domains characterized by the competi-
tion between dipolar long-range interactions and strong
anisotropies perpendicular to the plane of the film were
observed experimentally [7, 8]. At the same time, many
theoretical works have been done on the morphology and
stability of these magnetic structures [9, 10]. We also
remark the great interest of the researchers about the
ferromagnetic/antiferromagnetic (FM/AFM) thin films
reason to numerous special physical phenomena which
appear in these systems. For example, magnetic proper-
ties of FM/AFM bilayer can be drastically different from
those of free FM and AFM films, one of the established
effects being a unidirectional shift (exchange bias) and a
significant increase in the coercivity. The blocking tem-
perature (TB) below which these effects are observed, is
comparable to the bulk Néel temperature when the AFM
film is thick, but can be considerably lower when the
AFM film is thin [11, 12]. The relative recent neutron ex-
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periments [13] on CoO/Fe3O4 have found that the AFM
shows signs of ordering above TB. This indicates that the
proximity of the FM influences the phase transition in
the AFM in a way that cannot be predicted from study-
ing free AFM films. The interfacial magnetic phenomena
also rouse a great interest in thin film domain due to the
most interesting physical properties that can arise from
parameter’s discontinuity. In this paper we investigate
the triple-layer thin film magnetic behavior, in extended
anisotropic Heisenberg model, using Monte Carlo simu-
lations for different parameters settings. In this order
we try to find out the magnetic properties of this square
spins lattice disposed on three layers, the first of them be-
ing characterized by antiferromagnetic spin ordering. We
want to detect the first layer’s antiferromagnetic arrange-
ment of the spins influence on the other layers respecting
the magnetic state ordering, for different physical param-
eter’s settings and we principally focus our attention on
the investigation of different potential magnetic ordering
phases of the lattice spins occurrence.

The paper is organized as follows: Sect. 2 is devoted to
the description of the physical model we use, in Sect. 3
we describe the numerical Monte Carlo algorithm and
present the details of this and the physical quantities nec-
essary to elaborate our simulations, in Sects. 4 we display
the numerical results for different parameters settings,
concluding remarks being given in Sect. 5.

2. Physical model

We consider in this paper a triple-layer thin film char-
acterized by the following extended anisotropic Heisen-
berg Hamiltonian:
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H = −
∑

〈i,j〉
Jαiβj

Si · Sj −
∑

〈i,j〉
Aαiβj

SizSjz

+
∑

i,j

Dαiβj
Tij . (1)

The first term denotes the direct exchange interaction
between the nearest neighbor spins (〈i, j〉 meaning a
summation over the nearest neighbor), the second term
is related to the exchange anisotropy interaction be-
tween the nearest-neighbor spins and behaves as easy-
-axis anisotropy since it tends to align the spins in the
OZ direction in order to lower the energy of the system
and the third term in Hamiltonian (1) corresponds to the
long-range dipolar interaction between the spins. In the
last term the dipolar interaction (characterized by the
parameter Dαβ) is given by the expression

Tij =
Si · Sj

r3
ij

− 3
(Si · rij) (Sj · rij)

r5
ij

, (2)

where rij defines the relative distance between the spins.
In the next, we index the interaction parameters depen-
dent on the layer the spins belong to. Thus, we index
the antiferromagnetic ordered layer by “0” and the other
two by “1” and “2”, respectively. Jαβ represents the di-
rect exchange interaction constant, Aαβ is the easy-axis
anisotropy interaction parameter, and Dαβ is the dipolar
interaction between spins parameter (long-range interac-
tion). All parameters in the next are being indexed ac-
cording to the layer which the specified spins are part of
(αi, βj = 0, 1, 2 in accordance with the layer’s index). We
also consider the distance between the intra-layer spins
and the inter-layers distance are the same (a), the spins
sizes being S0 = S1 = S2 = S = 1 (arranged in a simple
cubic lattice with a (001) face). In the next, we index all
the model parameters in accordance with the positions of
the spins in the three layers. We set for direct exchange
interaction for the base layer (“0”) J00 = −J = −1, in
the next paragraphs JS2 and JS2/kB being the units for
energy and temperature, respectively.

3. Numerical algorithm

In order to obtain the properties of the triple-layer
magnetic films in the physical model presented above,
we have used the Monte Carlo simulation [14, 15], by
applying the standard Metropolis algorithm [16] on our
defined square spins lattice. Typically, 103–104 MC steps
per spin are used for equilibration and 103 steps for spin
are used for calculating the interesting physical average
quantities. We also have used open boundary conditions
(OBC) and we set kB = 1 for the Boltzmann constant. In
order to investigate the physical properties of the system,
we need the statistical average of the energy per spin

〈E〉 =
〈H〉
N

, (3)

where 〈 〉 denotes the statistical average, which is calcu-
lated by taking in account the partition function over the
Monte Carlo steps energies and N = NxNyNz represents
the number of sites of the lattice. For the specific heat

calculation we use the expression given by the energy dis-
persion

c = N

〈
E2

〉− 〈E〉2
kBT 2

. (4)

We also use for our simulations the out-of-plane (OZ)
and in-plane (XOY ) magnetic susceptibility, given by
the expressions

χz = N

〈
m2

z

〉− 〈mz〉2
kBT

, (5)

χxy = N

〈
m2

xy

〉− 〈mxy〉2
kBT

, (6)

where mz,mxy are the OZ and XOY components of the
magnetization vector

m =

N∑
i=1

Si

N
, (7)

Si meaning the spin at the site “i”. The components of
the magnetization are given by the following expressions:

mk =

N∑
i=1

Sik

N
, k = x, y, z, (8)

mxy =
√

m2
x + m2

y. (9)

In order to investigate the potential antiferromagnetic or-
dering we also define the OZ component of the staggered
magnetization, by the expression

msz =

∑
n

(−1)i+j
Szn

N
. (10)

4. Numerical results

As we already assigned in the previous sections, the
basal layer spins are characterized by a fixed antiferro-
magnetic ordering and the two other layers are charac-
terized by the Hamiltonian mentioned in our model pre-
sentation. The three interactions are extended also on
the basal layer, but their magnetic spin ordering is as-
sumed fixed (antiferromagnetic). Only the two superior
layers (“1” and “2”) contributions are taken into account
to physical quantities we calculate in our numerical sim-
ulations (the sample to investigate).

4.1. Ferromagnetism–paramagnetism transition

In this paragraph we set for the lattice size Nx = Ny =
50, distance between the adjacent spins a = 1 (this being
in the same time the inter-layer distances) and the other
parameter values are given by: J11 = J22 = J = 1,
J01 = J12 = J ′ = 0.75, A11 = A22 = A = 1 and
A01 = A12 = A′ = 1.1, 1.2, and 1.3, respectively,
D11 = D22 = D = 0.1, D01 = D12 = D′ = 0.1.
In Fig. 1 (top) we plot the out-of-plane magnetization
(in the next we represent the magnetizations normalized
to unity and consequently dimensionless) versus tem-
perature for threeversus temperature for three different



Monte Carlo Simulation on Triple Layer Thin Film . . . 715

Fig. 1. Out-of-plane (top) and in-plane (bottom) mag-
netization of the sample versus temperature for J11 =
J22 = J = 1, J01 = J12 = J ′ = 0.75, A11 = A22 =
A = 1, D11 = D22 = D = 0.1, D01 = D12 = D′ = 0.1,
for different A01 = A12 = A′ values.

Fig. 2. Out-of-plane (top) and in-plane (bottom) mag-
netic susceptibility of the sample versus temperature
for J11 = J22 = J = 1, J01 = J12 = J ′ = 0.75,
A11 = A22 = A = 1, D11 = D22 = D = 0.1,
D01 = D12 = D′ = 0.1, for different A01 = A12 = A′

values.

inter-layer anisotropy parameters which suggests a fer-
romagnetic ordering of the sample at low temperature,
at large temperature this magnetic ordering of the spins
disappears. The phase ferromagnetism–paramagnetism
transition (FM–PM) is characterized by the critical tem-
perature which slightly shifts to lower values along with
decreasing anisotropy parameter, the critical tempera-
ture being well approximated by the inflection point (the
second-order derivative changes the sign marked with the
arrows) of the magnetization graph.

In Fig. 1 (bottom) we show the out-of-plane magnetiza-
tion versus temperature and we can observe that the XY
magnetization of the spins is practically absent that con-

Fig. 3. Specific heat of the sample versus temperature
(top) for J11 = J22 = J = 1, J01 = J12 = J ′ = 0.75,
A11 = A22 = A = 1, D11 = D22 = D = 0.1,
D01 = D12 = D′ = 0.1, for different A01 = A12 = A′

values and FM → PM phase diagram line, along with
the dipolar interaction parameter (bottom); the inset
presents the qualitative phase diagram we expect for
the sample.

Fig. 4. Out-of-plane magnetic susceptibility of the
sample versus temperature for J11 = J22 = J = 1,
J01 = J12 = J ′ = 0.75, A11 = A22 = A = 1,
A01 = A12 = A′ = 1.3, D11 = D22 = D = 0.1,
D01 = D12 = D′ = 0.1, for different lattice size val-
ues.

firms the out-of-plane magnetization of these. In Fig. 2,
we present the out-of-plane (top) and in-plane (bottom)
magnetic susceptibility, where we detect the same de-
creasing critical temperature (along with the amplitude
subtraction of the magnetic susceptibility peaks ampli-
tude) as the interlayer easy-axis anisotropy parameter
decreases, this behavior confirming that the anisotropy
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interaction enlargement favors the ferromagnetic spin or-
dering in the sample, for parameter setting presented
above, although the basal layer is characterized by an
antiferromagnetic arrangement of the spins, the preferen-
tial orientations of the FM spins observed here resulting
from the exchange coupling to the AFM film [17].

Figure 3 (top) depicts the specific heat of the system
versus temperature for the three different anisotropy pa-
rameter values. In Fig. 3 (bottom) we present four points
of the phase separation line (FM → PM), critical point
being obtained for different dipolar interaction straight
Monte Carlo simulations for interlayer anisotropy param-
eter A′ = 1.3, the other parameters being those specified
in this section; in the inset we plot the qualitative phase
diagram we expect for our thin film, where we display the
magnetic phase of the physical system: the FM phase,
the disordered phase (PM), the mixed phase (MP) sit-
uated between the broken lines, the AFM ordering and
the in-plane spin arrangement (XY ).

In Fig. 4 we present the finite size effect, regarding the
FM → PM phase transition (transition symbolized by
the FM segment in the phase diagram — Fig. 3, bot-
tom), by taking into account the out-of-plane magnetic
susceptibility behavior.

4.2. Antiferromagnetism — mixed phase transition

In this paragraph we maintain for the lattice size
Nx = Ny = 50 and for distance between the adjacent
spins a = 1 (this being in the same time the inter-layer
distances) and for the other parameter values we choose:

Fig. 5. Out-of-plane (top) and in-plane (bottom) mag-
netization of the sample versus temperature for J11 =
J22 = J = 1, J01 = J12 = J ′ = 0.75, A11 = A22 =
A = 1, D11 = D22 = D = 0.175, D01 = D12 = D′ = 0.2,
for different A01 = A12 = A′ values.

J11 = J22 = J = 1, J01 = J12 = J ′ = 0.75, A11 = A22 =
A = 1 and A01 = A12 = A′ = 1.1, 1.2, and 1.3, respec-
tively, D11 = D22 = D = 0.175, D01 = D12 = D′ = 0.2.
In Fig. 5 we present the out-of-plane (top) and in-plane
(bottom) magnetization of the sample for the above pre-
sented model parameters setting.

Fig. 6. Out-of-plane (top) and in-plane (bottom) mag-
netic susceptibility of the sample versus temperature
for J11 = J22 = J = 1, J01 = J12 = J ′ = 0.75,
A11 = A22 = A = 1, D11 = D22 = D = 0.175,
D01 = D12 = D′ = 0.2, for different A01 = A12 = A′

values.

Fig. 7. Out-of-plane staggered magnetization (top)
and specific heat (bottom) of the sample versus tem-
perature for J11 = J22 = J = 1, J01 = J12 = J ′ = 0.75,
A11 = A22 = A = 1, D11 = D22 = D = 0.175,
D01 = D12 = D′ = 0.2, for different A01 = A12 = A′

values.

The out-of-plane magnetization vanishes at low tem-
perature and increases abruptly in the range of temper-
ature T = [0.5, 0.6], whereas the in-plane magnetization
is quasi-absent. To elucidate the magnetic phase of the
sample we show in Fig. 6 the out-of-plane (top) and in-
-plane (bottom) magnetic susceptibility of the system,
where we observe the one peak behavior of the out-of-
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-plane magnetic susceptibility that suggests a phase tran-
sition in the same range of temperature (the AFM seg-
ment in the phase diagram presented in Fig. 3, bottom).
The peak’s amplitude slightly decreases together with the
critical temperature when the easy-axis anisotropy A′ pa-
rameter value decreases.

The specific heat bearing (Fig. 7, right) confirms the
assumed phase transition but to trash out the nature
of this, we calculate the staggered out-of-plane magne-
tization (Fig. 7, left) and we find out that the system
suffers an AFM → MP transition (taking into account
the out-of-plane uniform and the staggered magnetiza-
tion graphs), the MP consisting in ferromagnetic domains
enclosed by disorder phase regions, as we have remarked
in our previous paper [18], where we have found out the
induced antiferromagnetic phase and the mixed phase ap-
pearance in a double layer spin lattice, which is a more
simple model we have used to investigate this kind of
AFM/FM interfaces. In this more elaborated model of
the triple layer lattice, the influence of the antiferromag-
netic basal layer on the superior layers is evidently dif-
ferent, taking into account the asymmetry of the system.

Fig. 8. Out-of-plane magnetic susceptibility of the
sample versus temperature for J11 = J22 = J = 1,
J01 = J12 = J ′ = 0.75, A11 = A22 = A = 1,
A01 = A12 = A′ = 1.3, D11 = D22 = D = 0.175,
D01 = D12 = D′ = 0.2, for different lattice size values.

Now we focus on the finite size effect on the out-of-
-plane magnetic susceptibility (Fig. 8) for three lattice
sizes (Nx = Ny = 50, 60, 70, respectively) and we observe
detect a very slight decrement of the critical temperature
along with the lattice size increasing. The calculus algo-
rithm is described above (Eq. (11)) and similar in both
of the cases (for temperature and out-of-plane magnetic
susceptibility amplitude).

4.3. Mixed phase — XY ordering transition

In this section we conserve the same parameters set-
ting as in previous section (4.2), but we choose an-
other temperature range for our numerical simulation:
T = [1.05, 1.25]. Figure 9 shows the out-of-plane (top)
and in-plane (bottom) magnetization of the sample where
one observes a very low out-of-plane component but an
abrupt increasing for the in-plane magnetization in high

Fig. 9. Out-of-plane (top) and in-plane (bottom) mag-
netization of the sample versus temperature for J11 =
J22 = J = 1, J01 = J12 = J ′ = 0.75, A11 = A22 =
A = 1, D11 = D22 = D = 0.175, D01 = D12 = D′ = 0.2,
for different A01 = A12 = A′ values.

temperature region that suggests a reorientation of the
spin (XY ordering).

In Fig. 10 there are shown the out-of-plane (top) and
the in-plane magnetic susceptibility (bottom) of the sam-
ple for the physical conditions presented above, in this
section and provide the arguments of magnetic order-
ing phase transition (symbolized by the acute peaks of
the graphs), together with the specific heat bearing illus-
trated in Fig. 11 (bottom). The amplitude of the peaks
slightly increases (together with the small enlargement
of the critical temperature) along with the inter-plane
anisotropy (A′) parameter increasing. Consequently, one
can observe that the behavior of the physical quantities
mentioned above suggests the out-of-plane preponderant
orientation of the lattice spins at low temperature and
the reorientation of these at high temperature values of
the temperature interval considered in this section (in-
-plane arrangement of the spins).

In order to elucidate the spin ordering in the low tem-
perature region of the temperature range assumed in this
section, we plot in Fig. 11 (top) the out-of-plane stag-
gered magnetization and we detect here the quasi-null
values of this for all the temperature spectra we have
assumed in this section, the physical presented quanti-
ties bearing proposing a mixed phase ordering of the lat-
tice spins for T ≈ [1.05, 1, 18] and the in-plane mag-
netic ordering of the spins for the other temperature
range [1.18, 1.25]. Thus we proved the presence of the
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Fig. 10. Out-of-plane (top) and in-plane (bottom)
magnetic susceptibility of the sample versus tempera-
ture for J11 = J22 = J = 1, J01 = J12 = J ′ = 0.75,
A11 = A22 = A = 1, D11 = D22 = D = 0.175,
D01 = D12 = D′ = 0.2, for different A01 = A12 = A′

values.

Fig. 11. Out-of-plane staggered magnetization (top)
and specific heat (bottom) of the sample versus tem-
perature for J11 = J22 = J = 1, J01 = J12 = J ′ = 0.75,
A11 = A22 = A = 1, D11 = D22 = D = 0.175,
D01 = D12 = D′ = 0.2, for different A01 = A12 = A′

values.

MP → XY phase transition (black segment in phase di-
agram — see inset of Fig. 3, bottom) of our system for
the physical conditions indicated above. Certainly, if the
temperature thenceforth increases, the physical system
will pass into paramagnetic phase, where the spins are
randomly arranged.

In this paragraph we investigate the finite size effect
on magnetic out-of-plane (Fig. 12, top) and in-plane
(Fig. 12, bottom) magnetic susceptibility, for three dif-
ferent lattice sizes.

Thus, we observe a very small relative variation of
the critical temperature (that presents a slight decrease

Fig. 12. Out-of-plane (top) and in-plane (bottom)
magnetic susceptibility of the sample versus tempera-
ture for J11 = J22 = J = 1, J01 = J12 = J ′ = 0.75,
A11 = A22 = A = 1, A01 = A12 = A′ = 1.3,
D11 = D22 = D = 0.175, D01 = D12 = D′ = 0.2,
for different lattice size values.

Fig. 13. Correlation function of the sample for J11 =
J22 = J = 1, J01 = J12 = J ′ = 0.75, A11 = A22 =
A = 1, D11 = D22 = D = 0.175, D01 = D12 = D′ = 0.2,
for different A01 = A12 = A′ values, at T = 0.85 (top)
and T = 1.15 (bottom).

along with the lattice size enlargement) in comparison
with the relative variation of the magnetic susceptibility
peak’s amplitude and one can therefore say that for rel-
ative large lattice size limit, the critical temperature is
quite stable. Thus, one can conclude that the interface
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discontinuity of the model parameters (considered in this
section) and the competition between the anisotropic and
dipolar interactions induce the in-plane spin’s reorienta-
tion along with increasing temperature, which practically
is equivalent with a temperature dependent out-of-plane
magnetic anisotropy occurrence in the system [19].

We also investigate the correlation function corre-
sponding to the mixed phase for two different temper-
atures, in order to estimate the dimension of the ferro-
magnetic domains (Fig. 13). One observes a more abrupt
decrement of the spin–spin correlation function among
the classical spins given by the expression (r being the
coordination number):

Cr =
∑

i

SiSi+r, (12)

as the temperature increases from T = 0.85 to T = 1.15,
being evident that the interlayer anisotropy interaction
favors the ferromagnetic arrangement of the lattice spins
(the correlation function increases along with A′ increas-
ing).

4.4. Comparative approach

Finally, in order to emphasize the different influence of
the antiferromagnetic basal layer on the superior layers
of this kind of lattices, we make a comparative approach
regarding the magnetic behavior of four various systems:
the superior layer of the double layer lattice (model used
in our previous paper [18]), the two superior layers of
the triple layer lattice (threaded as a whole system) and
the superior layers (1 and 2) of the triple layer lattice
(treated separately), in the ferromagnetic region of the
phase diagram, in order to find out the antiferromagnetic
basal layer influence on these four particular systems.
Thus, in Fig. 14 we show the magnetization (top) and
the out-of-plane magnetic susceptibility (bottom) for the
above mentioned physical systems vs. temperature for
the same parameters values.

Taking into account the critical temperature associated
with the transition ferromagnetism-disordered phase, one
can observe that the stability of the ferromagnetic phase
is different for the four systems. This is due to the dif-
ferent influence of the basal layer on the four studied
magnetic systems. The least influence of the basal layer
is observable in the case of the layer 2 (of the triple layer
lattice) in comparison with the other three systems we
have in view. Thus, we remark the asymmetric magnetic
behavior of the two layers of the triple layer film (the
basal layer influence on the layer 1 is more acute than on
the layer 2). Using the presented results, we can appre-
ciate the importance of the lattice structure respecting
the ferromagnetic ordering of the investigated magnetic
systems. It is evident that the antiferromagnetic basal
layer influence decreases with the increase in the number
of layers. Thus, for the same physical parameter values
the critical temperature corresponding to FM–PM tran-
sition is shifted to lower temperature for the double layer
film in comparison with the triple layer system.

Fig. 14. Out-of-plane magnetization (top) and mag-
netic susceptibility (bottom) of the four mentioned sys-
tems versus temperature for J11 = J22 = J = 1,
J01 = J12 = J ′ = 0.75, A11 = A22 = A = 1,
A01 = A12 = A′ = 1.2, D11 = D22 = D = 0.1,
D01 = D12 = D′ = 0.1.

5. Conclusions

The increasing interest in nanostructured magnetic
materials has been driven by demands for their practi-
cal applications as well as by their scientific importance
in the last decades. Remarkable progress has been made
on their technological applications, particularly for mag-
netic and spintronic devices such as high-density data
storage and magnetic field sensors. In this paper we
concern triple layer thin film magnetic properties whose
basal layer is characterized by a fixed antiferromagnetic
spins ordering, using Monte Carlo simulations. The basal
layer’s antiferromagnetic ordering influence on the sam-
ple (the other two layers) was investigated and one re-
lieves the magnetic phases ordering occurrence for differ-
ent physical model’s parameters. We have focused our at-
tention on three magnetic phase transitions: FM → PM,
AFM → MP, MP → XY , by calculating the interesting
physical quantities of the system: the out-of-plane and
in-plane magnetization, the out-of-plane and in-plane
magnetic susceptibility, the specific heat and the out-of-
-plane staggered magnetization. In each case we have
made a comparative treatment respecting the relative
variation of critical temperature and of magnetic suscep-
tibility peak. The simulations results evidence the an-
tiferromagnetic ordering phase and the mixed phase do-
mains appearance in the phase diagram, as a consequence
of the basal layer spins antiferromagnetic ordering influ-
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ence. We have also investigated the correlation function
corresponding to the mixed phase for two different tem-
peratures, in order to estimate the dimension of the fer-
romagnetic domains in this case and we observed a more
abrupt decrement of the spin–spin correlation function
among the classical spins as the temperature increases
and the correlation function enlargement along with A′

increment. Finally, we have made a comparative study
regarding the magnetic ordering, in order to find out the
antiferromagnetic basal layer different influence on four
particular magnetic systems, in the ferromagnetic region
of the phase diagram.
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