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Theoretical Analysis of the TE Mode Cerenkov Type
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We present a study of the Cerenkov configuration second harmonic generation in X-cut ion-implanted lithium
niobate waveguides. An approximate solution of conversion efficiency is given and plotted which shows that it is
very sensitive to the waveguide depth and pump wavelength. The results can be used in the design of waveguides
for the efficient second harmonic generation in the Cerenkov configuration.

PACS numbers: 61.72.Dd, 42.82.Et

1. Introduction

Lithium niobate (LiNbO3) is a widely-used material
in integrated nonlinear optics for its remarkable electro-
-optical, acousto-optical and nonlinear properties. Sev-
eral processes of fabricating waveguides, such as titanium
indiffusion (TI) [1], proton exchange (PE) [2], have been
extensively developed. Since Destefanis et al. success-
fully fabricated lithium niobate waveguides with helium
ion in 1978 [3, 4], ion-implantation (IP) as an effective
technology has aroused extensive concern to make opti-
cal waveguide.

Ion implantation is the process of depositing a chem-
ical species into a substrate by direct bombardment of
the substrate with high-energy ions of the chemical for
deposition. Over the years, ion implantation has steadily
replaced thermal diffusion for doping a material in wafer
fabrication because of its many advantages. The great-
est advantage of ion implantation over diffusion is its
more precise control for depositing atoms into the sub-
strate. Besides, advantages of ion implantation include
wide selection of masking materials, less sensitive to sur-
face cleaning procedures as well as excellent lateral dose
uniformity.

Optical second harmonic generation in the form of the
Cerenkov radiation from a planar waveguide was first re-
ported by Tien et al. in 1970 [5]. When the nonlinear po-
larization in a waveguide has a faster phase velocity than
that of a free wave at the harmonic frequency in the ma-
terial, a Cerenkov configuration second harmonic genera-
tion (SHG) will occur. By now several theoretical works
on the Cerenkov radiation SHG have been done [6, 7],
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but there is no study of the Cerenkov SHG (CSHG) on
ion-implanted waveguides.

In this paper, we will present in detail our theoreti-
cal analysis of the Cerenkov SHG from an ion-implanted
X-cut lithium niobate planar waveguide. We will study
the influences of waveguide parameters on the Cerenkov
radiation conversion efficiency.

2. Theory

In this section, we will present a theoretical calculation
of CSHG in X-cut LiNbO3 planar waveguides realized by
ion-implantation. Figure 1 shows the waveguide struc-
ture and the crystal orientation that we consider. The
axes a, b and c are the principal axes of LiNbO3. For
an X-cut waveguide, the optical axis c is parallel to the
axis y. The light propagates in the z-direction. In the
following calculations, we use the subscripts f for the
fundamental fields and h for the harmonic fields. The
subscripts 1, 2, and 3 denote the waveguide, the sub-
strate, and the cladding, respectively.

Fig. 1. Definition of crystal orientation (X-cut) and
the arrangement of the Cerenkov SHG regime in an op-
tical waveguide.
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2.1. Fundamental wave TE guided mode

The fundamental field is a guided wave, Maxwell’s
equations for the fields are

∇× Ef = −iωfµ0Hf , (1.1)

∇×Hf = iωfεrfε0Ef . (1.2)
In the X-cut IP waveguides, the TE modes, which have

the components Ey, Hx and Hz, can propagate. Using
Eqs. (1.1) and (1.2), we can obtain the following equation
for the fundamental mode:

d2Efy (x)
dx2

+
(
k2

fn2
fe − β2

f

)
Efy (x) = 0. (1.3)

The solution of Eq. (1.3) can be obtained by using the
boundary conditions and is expressed as

Efy(x) =





A [cos (kf1d) + T2 sin (kf1d)] e−kf3(x−d), d < x,

A [cos (kf1x) + T2 sin (kf1x)] , 0 < x < d,

Aekf2x, x < 0,

(1.4)

with



k2
f1 = k2

fn2
fe1 − β2

f ,

k2
f2 = β2

f − k2
fn2

fe2,

k2
f3 = β2

f − k2
f ,

T2 =
kf2

kf1
.

Using the boundary conditions, we get the eigenvalue
equation

kf1d = mπ + arctan T2 + arctanT3

(m = 0, 1, 2, . . .) (1.5)
with

T3 =
kf3

kf1
.

2.2. Second harmonic TE radiation mode

Maxwell’s equations for the harmonic fields are
∇× Eh = −iωhµ0Hh, (2.1)

∇×Hh = iωh (εhEh + P ) , (2.2)
where P is the nonlinear polarization generated by fun-
damental field, and for X-cut LiNbO3:

Py = ε0d33E
2
fy. (2.3)

For the TE modes, from Eqs. (2.1) and (2.2), we can
derive the following equations for the harmonic fields:

∇2Ehy + k2
hn2

heEhy = −µ0ω
2
hPy, (2.4)

Hhx =
1

iµ0ωh

∂Ehy

∂z
, (2.5)

Hhz = − 1
iµ0ωh

∂Ehy

∂x
. (2.6)

To solve Eq. (2.4), we look for a solution for the harmonic
field of the form

Ehy(x, z) = Ehy(x)e−iβhz. (2.7)

Putting this equation into Eq. (2.4), we can obtain
d2Ehy(x)

dx2
+ (k2

hn2
he − β2

h)Ehy(x) = −µ0ω
2
hPy(x) (2.8)

with kh = 2kf , βh = 2βf .
The solution of (2.8) is the sum of the general solu-

tion G(x) of the equation without the source term and a
particular solution Q(x) as the forced field which is gen-
erated directly by the nonlinear polarization Py. There-
fore, the solution can be written as

Ehy(x) = G(x) + Q(x). (2.9)

The expression for G(x) can be written as

G(x) =





De−kh3(x−d), d < x,

Ae−ikh1x + Beikh1x, 0 < x < d,

Ceikh2x, x < 0,

(2.10)

with k2
h1 = K2

hn2
he1 − β2

h, k2
h2 = K2

hn2
he2 − β2

h, k2
h3 =

β2
h −K2

h.

For Q(x) we define

Q(x) =





Q3(x), d < x,

Q1(x), 0 < x < d,

Q2(x), x < 0.

(2.11)

Then we can write the harmonic field as

Ehy(x, z) =





[
De−kh3(x−d) + Q3(x)

]
e−iβhz, d < x,[

Ae−ikh1x + Beikh1x + Q1(x)
]
e−iβhz, 0 < x < d,[

Ceikh2x + Q2(x)
]
e−iβhz, x < 0.

(2.12)

The constants A, B, C, and D in Eq. (2.12) can be determined by using the boundary conditions. The par-
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ticular solution Q(x) represents the forced field which is
generated by the nonlinear polarization Py(x). Py(x) is

determined by the fundamental field Efy(x).
Therefore, the nonlinear polarization can be written as

py(x) = ε0d33E
2
fy(x) =





0, d < x

ε0d
(1)
33 A2 [cos (kf1x) + T2 sin (kf1x)]2 , 0 < x < d,

ε0d
(2)
33 A2e2kf2x, x < 0.

(2.13)

We can find the particular solution Q(x):
Q(x) = µ0ε0ω

2
hA2f(x) (2.14)

with

f(x) =





0, d < x,

−d
(1)
33

[
1+T 2

2
2k2

h1
+ (1−T 2

2 ) cos 2kf1x+2T2 sin 2kf1x

2(k2
h1−4k2

f1)

]
, 0 < x < d,

− d
(2)
33

k2
h2+4k2

f2
e2kf2x, x < 0.

(2.15)

2.3. Efficiency of SHG

In the case of a planar waveguide uniformly excited
over an interaction width W , the harmonic power at the
exit face of the structure is calculated by the formula

ph =
W

2
Re

∫ +∞

−∞
(Eh ×H∗

h)z0dx, (3.1)

which can be calculated into

Ph =
1
2
Wµ0ε

2
0βhω3

hA4L tan θ |c|2 , (3.2)

where L and W are the length and interaction width of
the waveguide respectively, θ is the Cerenkov angle, and
the fundamental power is given by

Pf =
βfWdeffA2(1 + T 2

2 )
4ωfµ0

. (3.3)

The conversion efficiency is given by

η =
Ph

Pf
=

8µ3
0ε

2
0ω

5
h

βh

LPf

W

tan θ |c|2
d2
eff

1
(1 + T 2

2 )2
, (3.4)

where deff is the effective depth of the fundamental TE
mode

deff =
1

kf2
+ d +

1
kf3

, (3.5)

c is a parameter that depends on the forced field

|c|2 =
|kh1(kh3f13 + f ′13) + kh1(kh1 sin kh1d− kh3 cos kh1d)f12 − (kh1 cos kh1d + kh3 sin kh1d)f ′12|2

k2
h2(kh1 cos kh1d + kh3 sin kh1d)2 + k2

h1(kh3 cos kh1d− kh1 sin kh1d)2
, (3.6)

with

f12 = − d
(2)
33

k2
h2+4k2

f2
+ d

(1)
33

[
1 + T 2

2

2k2
h1

+
1− T 2

2

2(k2
h1 − 4k2

f1)

]
,

f13 = d
(1)
33

×
[

1 + T 2
2

2k2
h1

+
(1− T 2

2 ) cos 2kf1d + 2T2 sin 2kf1d

2(k2
h1 − 4k2

f1)

]
,

f ′12 = − 2d
(2)
33 kf2

k2
h2 + 4k2

f2

+
2d

(1)
33 T2kf1

k2
h1 − 4k2

f1

,

f ′13 = d
(1)
33

×2(T 2
2 − 1)kf1 sin 2kf1d + 4T2kf1 cos 2kf1d

2(k2
h1 − 4k2

f1)
.

3. Discussion

Formula (3.4) shows that the conversion efficiency in
CSHG increases linearly with the interaction length L,
this is consistent with the conclusions of Refs. [8–10] for
large Cerenkov angles. That is to say, formula (3.4) is
suitable under this condition.
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In addition to the dependence of interaction length,
the efficiency depends drastically on waveguide param-
eters. We have calculated the conversion efficiency for
IP waveguides on X-cut LiNbO3 by changing the wave-
guides depth and the pump wavelength to show how the
Cerenkov radiation varies with these parameters, with
the length and interaction width of 10 mm and 10 µm,
respectively. The dependence of the refractive indices in
the substrate on the wavelength has been obtained by
the Chebyshev method [11] and the refractive indices in
the guiding layer come from Ref. [12]. For most of the
waveguides realized by ion-implantation, the waveguide
depth is between 1.5 µm and 3.0 µm. Therefore our cal-
culations are done in this extent.

Fig. 2. Efficiency with different waveguide depth as a
function of pump wavelength.

Fig. 3. Cerenkov SHG efficiency with different pump
wavelength as a function of waveguide depth.

Figures 2 and 3 are obtained under the condition of
m = 0. In the range of pump wavelength λf = 0.7–
1.1 µm, the minimum waveguide depth is beyond 3.0 µm
when the conversion efficiency is not equal to 0 at m =

1, 2, 3. . . We can see from Figs. 2 and 3 that for a given
waveguide depth the efficiency is very sensitive to the
pump wavelength, and for a given pump wavelength the
efficiency is also very sensitive to the waveguide depth.
Figure 2 shows that for a given waveguide depth, the rela-
tively maximum conversion efficiency can be obtained at
a certain pump wavelength, and the relatively maximum
conversion efficiency of d = 2.0 µm is higher than that
of d = 1.75 µm. For a given pump wavelength, the rela-
tively maximum conversion efficiency can be obtained at
a certain waveguide depth, and the relatively maximum
conversion efficiency of λf = 1.064 µm is higher than
that of λf = 0.808 µm, as can be seen from Fig. 3. Fig-
ure 3 also indicates that the minimum waveguide depth
increases with the increase in pump wavelength when the
conversion efficiency is not equal to 0.

4. Conclusion

We have proposed a model analysis for calculating the
conversion efficiency of the Cerenkov type second har-
monic generation in ion-implanted X-cut lithium niobate
planar waveguides. We have studied the influences of
the different parameters of waveguides, depth and pump
wavelength, on the CSHG. Theoretical results indicate
that the relatively maximum conversion efficiency in-
creases with the increase in the waveguide depth and the
pump wavelength. The model allows us to determine
the optimum parameters for an integrated optical visible
CSHG source pumped by semiconductor lasers.

However, we have not considered the SHG efficiency at
small Cerenkov angles. For large Cerenkov angles and in-
teraction lengths it yields the expected L dependence (as
we have discussed), while in the limit of small Cerenkov
angles the dependence is found to have the form of L3/2

[8–10]. We would intend to study this area in our future
work.
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