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Acoustic attenuation due to phonon–phonon interaction, thermoelastic mechanism and dislocation damping
were evaluated in uranium monopnictides (viz. UN, UAs and USb) in the temperature range 50–500 K, along the
three crystallographic directions of propagation, viz. [100], [110] and [111] for longitudinal and shear modes of
propagation. Due to antiferromagnetic property of these compounds ultrasonic attenuation due to magnon–phonon
interaction was also obtained. The second- and third-order elastic moduli of B1-type uranium monopnictides were
obtained using electrostatic and the Born repulsive potentials. Gruneisen numbers and acoustic coupling constants
were evaluated for longitudinal and shear waves along different directions of propagation and polarization.
Results were discussed and compared with available data. It was found that the temperature dependence of
attenuation due to phonon–phonon interaction and thermoelastic loss mechanisms follow the third and fourth
order polynomial fit laws, respectively, and acoustic attenuation is mainly governed by phonon–phonon interaction
in this temperature range.

PACS numbers: 43.35.Cg, 62.20.de, 62.20.D−

1. Introduction

The NaCl-type uranium monopnictides (UX, X = 7N,
33As, 51Sb) exhibit a great variety of anomalous behav-
ior as far as their elastic, electronic, lattice dynamical
and magnetic properties [1–11] are concerned. Uranium
monopnictides show antiferromagnetic ordering at TN or
TC (53, 124, and 213 K for UN, UAs, and USb, re-
spectively), which increases with increasing anion atomic
number. The electronic structure of uranium monopnic-
tides is characterized by 5f and 6d electrons in addition
to conduction electrons close to the Fermi energy. These
groups of electrons give the compounds, their metallic
character and high electronic specific heat [12, 13]. The
lattice dynamical properties for these compounds have
been studied using rigid ion and shell models [7], three-
-body force rigid ion model [8] and three-body force shell
model [9]. But results on acoustical studies are not avail-
able for these compounds.

Different causes can be attributed to the attenuation
of acoustic wave propagating through solids. Some im-
portant causes of acoustical dissipation are: electron–
phonon interaction, phonon–phonon interaction, ther-
moelastic loss, losses due to lattice imperfections (viz.
dislocation damping due to screw and edge dislocations),
and in ferromagnetic and antiferromagnetic materials,
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magnon–phonon interaction also produces acoustical dis-
sipation in lower temperature range (T < 50 K). In
dielectric crystals, interaction of acoustic phonons and
thermal phonons is the dominant cause of acoustical dis-
sipation at higher temperatures [14], while in ferromag-
netic and antiferromagnetic compounds, in presence of
external magnetic field, magnon–phonon interaction is
the principal cause in the lower temperature range [15].
Such types of studies are essential for assessing the suit-
ability of materials for several practical problems, such
as the design of optimum sound transmission systems for
ultrasonic delay lines [16]. From microstructure charac-
terization point of view, it is well known that acoustic
properties of materials are very important. Therefore, in
the present paper we have studied the acoustic attenua-
tion due to different causes. Second and third order elas-
tic moduli, the Grüneisen parameters, acoustic coupling
constants, and viscous drag coefficients due to screw and
edge dislocations have also been evaluated for uranium
monopnictides.

2. Theoretical approach

2.1. Elastic moduli

Elastic moduli of n-th order is defined as [17]:
Cijklmn... = (∂nu/∂εij∂εkl∂εmn . . .) , (1)

where u is the crystal free-energy density and εij is the
strain tensor.

(664)
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Second- and third-order elastic moduli (SOEM and
TOEM) at absolute zero temperature viz. C0

ij and C0
ijk

are given as [18]:
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where Z is atomic number, r is nearest neighbor distance,
q is hardness parameter
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Second- and third-order elastic moduli at tempera-
ture, T are the sum of elastic moduli at absolute zero
temperature and vibrational contribution to second- and
third-order elastic moduli at corresponding temperature
[19–22] viz. C0

ij and C0
ijk, i.e.

Cij(T ) = C0
ij + Cvib.

ij , (2)

Cijk(T ) = C0
ijk + Cvib.

ijk , (3)
where Cvib.
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elastic moduli given by
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2.2. Acoustic attenuation

Acoustic attenuation due to interaction of acoustical
phonons and lattice phonons (i.e. phonon–phonon in-
teraction) for longitudinal and shear wave are given by
[23–26]:

[(α)p−p]l =
E0ω

2(Γl/3)τl

2ρV 3
l

, (4)

[(α)p−p]s =
E0ω

2(Γs/3)τs

2ρV 3
s

, (5)

where ω is angular frequency, E0 is energy density, Γ is
acoustic coupling constant, τ is thermal relaxation time,
ρ is density and Vl and Vs are the velocities for longitu-
dinal and shear wave, respectively.

Attenuation due to thermoelastic loss is given by
[23–26]:



666 R.K. Singh et al.
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This type of attenuation occurs due to longitudinal
wave only, because, due to shear wave propagation, the
volume remains unaltered and there is no heating effect.

Acoustic coupling constant is given by [23–26]:
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are square average and average

square Grüneisen parameters corresponding to a partic-
ular direction of propagation and polarization.

Thermal relaxation time is given by [23–26]:
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τl

2
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where K is thermal conductivity, Cv is specific heat per
unit volume and 〈V 〉 is the Debye average velocity.

The Debye average velocity is given by
3
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Viscous drag coefficients due to screw and edge dislo-
cations are given by [23–26]:

δscrew = 0.071χ, (10)

δedge = 0.053χ(1− σ2) + 0.0079/(1− σ2)(ζ/λ)η (11)
where η = χl − (4/3)χs, χl = E0Γlτ/3, χs = E0Γsτ/3,
λ = (C11 + 2C12)/3, ζ = (C11 − C12 + C44)/3, and
σ = C12/(C11 + C12), and where λ, ζ, η, σ and χ are
the bulk modulus, shear modulus, phonon viscosity, Pois-
son’s ratio and compressional viscosity, respectively.

In presence of external magnetic field, magnon–phonon
interaction also produces the acoustical dissipation in fer-
romagnetic and antiferromagnetic materials. Acoustic
wave attenuation due to magnon–phonon interaction for
longitudinal and transverse waves are given by [15]:
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where H0 is the magnitude of applied field, γ =
gyromagnetic ratio, ρ is the density, Θ0 and ΘC are tem-
peratures evaluated using expressions given in Ref. [15],
β1 and β2 are some constants. Vl and Vt are ultrasonic
velocities of longitudinal and transverse wave, a is lattice
parameter, ω = 2πf = angular frequency of acoustical
wave.

3. Results and discussions

SOEM and TOEM and bulk modulus of uranium
monopnictides were evaluated using electrostatic and the
Born repulsive potentials. Nearest neighbor distance and
hardness parameter were used as input data. SOEM and
bulk modulus and TOEM thus obtained, have been given
in Tables I and II, respectively. SOEM and bulk modu-
lus have been compared with available values in literature
[7, 11, 27, 28]. Our values are in good agreement with the
available values. However, TOEM could not be compared
due to lack of available values in literature. TOEM have
been evaluated for LiF using present approach and val-
ues so obtained have been compared with available values
in literature for LiF [22]. From Table II, it can be seen
that the TOEM for LiF obtained using present approach
are in good agreement with available values. Therefore,
present approach of calculation for SOEM and TOEM
for uranium monopnictides is justified.

TABLE I

Calculated, experimental and other papers second-order
elastic moduli and bulk modulus (1011 dyne/cm2) of ura-
nium monopnictides.

Comp. C11 C12 C44 λ

UN

present 42.00 4.90 5.23 17.3

other 42.0±0.4a 9.0±0.5a 7.9±0.08a 20±0.3a

papers – – – 20d, 19d, 21d

UAs

present 25.04 2.39 2.64 9.94

other 25.0±1a 1.0±1.5a 2.6±0.5a 9.0±1.3a

papers 25.0±1b 1.0±0.15b 2.6±0.5b 10d, 9d

25.0±1c 1.0±0.5c 2.6±0.5c 10.6d

USb

present 16.03 1.88 2.04 6.59

other 16.0±1a 0.7±1.5a 2.0±1a 5.8±1.3a

papers 16.0±1b 2.0±1b 0.7±0.15b 6.2d, 7.3d

16.0±1c 0.7±0.15c 2.0±1.0a 5.5d, 8.4d

aRef. [7]; bRef. [11]; cRef. [26]; dRef. [27]

Lattice energy density (E0) and specific heat (Cv)
were obtained as function of the Debye temperature,
ΘD [29, 30] and are given in Table III. Square average
Grüneisen parameters, average square Grüneisen param-
eters and acoustic coupling constants along [100] and
[110] directions of propagation (along [001] and [11̄0] di-
rections of polarization for shear modes) are presented in
Table IV. These values are similar to other fcc crystals
[31–33]. Viscous drag coefficient due to screw and edge
dislocations was evaluated using Eqs. (10) and (11) and
is given in Table V.

Attenuation coefficient due to magnon–phonon inter-
action for longitudinal and transverse waves has been
evaluated by taking the value of γ = 1.76×107 Oe−1 s−1
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TABLE II

Third-order elastic constants (1012 dyne/cm2) of the
materials at 300 K.

Comp. C111 C112
∗C123 = C144 C166 C456

UN −88.61 −1.45 0.98 −1.95 0.91

UAs −56.69 −0.56 0.50 −0.96 0.50

USb −33.53 −0.53 0.43 −0.76 0.31

LiF −6.75 −2.60 1.01 −2.80 0.98

Ref. [21] −5.97 −2.61 0.91 −2.64 0.88
∗C123 = C144, since vibrational part is the same

TABLE III

Debye temperature ΘD, phonon energy
density E0 (108 erg/(mol K)), specific heat
Cv (107 erg/(mol K)), and Debye aver-
age velocity 〈V 〉 (105 cm/s) for uranium
monopnictides.

Comp. ΘD [K] E0 Cv 〈V 〉
UN 249 5.56 2.41 2.1742

UAs 221 5.80 2.42 1.7844

USb 168 6.02 2.45 1.6185

TABLE IV

Square average and average square Grüneisen number for
longitudinal 〈γj2

i 〉l, 〈γj
i 〉2l and shear 〈γj

i 〉2s, 〈γj
i 〉2s∗ waves,

acoustic coupling constants Γl, Γs, and Γs∗ at 300 K for
uranium monopnictides.

Dirn 〈γj2
i 〉l 〈γj

i 〉2l 〈γj
i 〉2s 〈γj

i 〉2s∗ Γl Γs Γs∗

UN [100] 8.22 1.66 0.08 – 67.62 0.78 –

[110] 7.72 2.12 0.25 16.94 58.66 2.27 152.52

UAs [100] 9.95 1.77 0.08 – 82.91 0.74 –

[110] 8.96 2.25 0.18 20.74 72.15 1.70 186.72

USb [100] 8.02 1.64 0.08 – 66.24 0.78 –

[110] 7.22 2.04 0.26 16.59 57.41 2.40 149.35
lfor longitudinal wave; sfor shear wave, polarized along

[001]; s∗ for shear wave, polarized along [11̄0]

TABLE V

Viscous drag coefficient due to screw and edge dislocation
for uranium monopnictides at 300 K for longitudinal (in
cp) and shear (in mp) waves.

Comp. Dirn (δscrew)long (δscrew)shear (δedge)long (δedge)shear

UN [100] 3.37 0.38 2.85 3.52

[110] 2.92 1.13 2.46 3.41

UAs [100] 3.34 0.29 2.82 3.36

[110] 2.91 0.68 2.45 3.19

USb [100] 2.26 0.26 1.19 2.25

[110] 1.96 0.82 1.65 2.32

at f = 1 GHz and T = 10 K using Eqs. (12) and (13) for
these materials and values are shown in Table VI along
with attenuation values for yttrium iron garnet (YAG). Vl

and Vt have been evaluated using elastic constants, den-
sity and lattice parameters (a = 4.89, 5.779, and 6.19 Å
for UN, UAs, and USb, respectively). These values for
uranium monopnictides are smaller than that of YAG.
¿From Table VI and values of (α/f2) shown in Figs. 1
and 2, it can be seen that contribution to the attenua-
tion by magnon–phonon interaction for longitudinal and
transverse waves is negligible compared to contribution
due to phonon–phonon interaction.

TABLE VI

Attenuation due to magnon–phonon in-
teraction (dB/µs) for longitudinal and
shear wave for UN, UAs and USb along
with YAG.

Comp. Longitudinal Shear

UN 1.03× 10−8 3.47× 10−9

UAs 1.08× 10−8 4.32× 10−10

USb 7.76× 10−9 3.39× 10−10

YAG 1× 10−8 6× 10−6

Figures 1 and 2 show the temperature variation of
acoustic attenuation, (α/f2) for longitudinal and shear
waves, respectively. From these figures it can be seen that

Fig. 1. Temperature variation of (α/f2)l along differ-
ent directions of propagation for uranium monopnic-
tides.

at lower temperatures, acoustic attenuation increases
with temperature at faster rate and at higher tempera-
tures rate of variation becomes nearly constant. The fac-
tor V 2τ (called diffusion coefficient) measures the ability
of thermal phonons to absorb energy from a sound wave
of velocity V (in crystals energy is carried by phonon
wave packets with group velocity V ) [34, 35]. From Fig. 3
it can be seen that V 2τ has larger value at lower tem-
perature and decays exponentially. Therefore, at lower
temperature range, the rate of absorption of sound en-
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Fig. 2. Temperature variation of (α/f2)s along differ-
ent directions of propagation for uranium monopnic-
tides.

ergy (hence ultrasonic attenuation) is large and at higher
temperatures it decreases and becomes nearly constant.

Fig. 3. Temperature variation of V 2τ for uranium
monopnictides for longitudinal and shear waves.

The temperature variation of acoustic attenuation due
to thermoelastic loss, (α/f2)th has been shown in Fig. 4.
At lower temperatures, (α/f2)th increases with temper-
ature and then becomes nearly constant.

Figures 5–8 show the temperature variation of acous-
tic coupling constant for longitudinal and shear modes,
along [100] and [110] directions of propagation. From
Figs. 5 and 6, it can be seen that acoustic coupling con-
stant (which is the measure of the anharmonicity of crys-
tal) for longitudinal wave increases with temperature at
slower rate in the temperature range 50–200 K, and be-
yond 200 K, rate of temperature variation becomes nearly
constant. Acoustic coupling constant for shear wave (Γs)
remains almost constant (Figs. 7 and 8). Thus total
acoustic attenuation is mainly affected by longitudinal
wave attenuation due to larger values of Γl.

Ultrasonic attenuation due to phonon–phonon interac-
tion for longitudinal and shear waves, i.e. (α/f2)l and
(α/f2)s increase from UN to USb due to increase in the
molecular weight or increase in the anion atomic num-

Fig. 4. Temperature variation of (α/f2)th along dif-
ferent directions of propagation for uranium monopnic-
tides.

Fig. 5. Temperature variation of acoustic coupling con-
stant (Γl) for longitudinal wave along [100] direction of
propagation for uranium monopnictides.

ber. As molecular weight increases, the velocity of anion
reduces. Thus the Debye average velocity decreases from
UN to USb (Table III).

From Table III, it can be seen that the Debye temper-
ature decreases from UN to USb. Therefore, we can say
that the larger the Debye temperature, the smaller will be
attenuation. The Debye temperature depends on SOEM

Fig. 6. As in Fig. 5, but along [110] direction.
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Fig. 7. Temperature variation of acoustic coupling con-
stant (Γs) for shear wave along [100] direction of prop-
agation for uranium monopnictides.

Fig. 8. As in Fig. 7, but along [110] direction.

values (through the Debye average velocity) hence, the
larger the SOEM, the smaller the attenuation (because
SOEM of the material are the measure of elasticity (or
softening) of the crystal). Thus, it may be stated that
USb is the most stable and has the least imperfections
than the other two members of the group.

4. Conclusion

Total attenuation in these monopnictides in the
present temperature range is the sum of attenuation due
to phonon–phonon interaction, thermoelastic loss and
dislocation damping due to screw and edge dislocations.
Attenuation due to thermoelastic loss, dislocation damp-
ing and magnon–phonon interaction is negligible in com-
parison to the loss due to phonon–phonon interaction
mechanism (Figs. 1 and 2, Table V and Table VI). Thus,
phonon–phonon interaction is the principal cause domi-
nating the acoustic attenuation due to larger value of Γl.

Using the polynomial fit law for (α/f2), it has been
found that attenuation due to phonon–phonon interac-
tion and thermoelastic loss follow the fourth- and third-
-order polynomial temperature dependent fits, respec-
tively in the temperature range 50–500 K, i.e.

(α/f2)p−p = A + B1T + B2T
2 + B3T

3 + B4T
4,

(α/f2)th = C + C1T + C2T
2 + C3T

3,

where A, B1, B2, B3, B4 and C, C1, C2, C3 are constants.
To the best of our knowledge, no experimental or the-

oretical data is available on attenuation for these ura-
nium compounds, however, comparison has been made
for SOEM and TOEM for LiF obtained using present

approach and values available in literature. On the basis
of good agreement for SOEM and TOEM data, it can be
concluded that present approach for temperature depen-
dence of acoustic attenuation is valid.
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