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A simple and short derivation of von Weizsäcker equation for kinetic energy functional is presented. The
derivation is based on the Green–Gauss theorem and is valid for one-electron systems. In the proof the asymptotic
behavior of wave function for the finite systems was used. Two results important for kinetic energy functional
evaluation are also derived as consequences of the Green–Gauss theorem.
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1. Introduction

The density functional theory (DFT) [1–3] is a pow-
erful tool to study the molecular systems. First main
theorem of this theory states that the ground state of
the system can be fully described by electron density
%(r): R3 → R. Second theorem states that the total en-
ergy of the system can be obtained by minimization of the
functional E[%] subject to the constraint

∫
R3 %(r)dr = N ,

where N is total number of electrons in the system. The
DFT theory is the powerful tool, however it has one
drawback: the exact kinetic energy functional and exact
exchange-correlation functional are unknown and hence
the total energy functional is approximated only.

The research in construction of the exchange-
-correlation functionals has been successful and many
precise (although approximate) functionals based on lo-
cal (LDA) and gradient (GGA) approximation have been
proposed [4]. However, the progress in construction of
the kinetic energy functionals is not so fruitful. The re-
view of the orbital-free kinetic energy density functionals
(OF-KEDF) is presented by Wang [5]. The availability
of accurate orbital-free kinetic energy density functionals
could avoid the solution of the Kohn–Sham eigenprob-
lem. It has not been constructed and, therefore, the al-
gorithm solving Kohn–Sham eigenproblem based on the
linear combination of atomic orbital (LCAO) leads to al-
gebraic generalized eigenvalue problems with solving cost
scaling as O(n3).

In the classical approach based on the Kohn–Sham
eigenproblem one must store the set of eigenfunctions
{Ψi(r) : R3 → R}N

i=1. If the eigenfunction Ψi(r) is
represented by M basis functions, then MN coefficients
must be evaluated holding the orthogonality constraints∫
RΨi(r)Ψj(r)dr = δi,j . The availability of OF-KEDF

could reduce the dimension of the problem to R3. More-

over, if electron density %(r) was represented by M
atomic orbitals, only M coefficients could be evaluated
without the orthogonality constraint. Further, one could
avoid solving eigenvalue problem and solve the minimiza-
tion problem with constraints only, where the efficient
algorithms are available [6].

There are two classical results proved by Thomas–
Fermi and von Weizsäcker [5, 3] concerning OF-KEDF.
Based on these models more sophisticated results were
presented in Refs. [7–9]. The key point is that Thomas–
Fermi model is exact only for the free electron gas. The
Thomas–Fermi model applied to molecular systems gives
quite poor results [10, 11]. More reliable model was in-
troduced by von Weizsäcker, which is derived using the
density matrix formalism. For instance von Weizsäcker
model is exact for one-electron systems.

In this paper we present the derivation of von
Weizsäcker relation for one-electron systems. The deriva-
tion is based on the definition of kinetic energy. Addi-
tionally, we prove that the kinetic energy functional for
many-electron system cannot include

∫
R3 ∇2%(r)dr. The

derivation is based on the Green–Gauss theorem.

2. Consequences of the Green–Gauss theorem

There are many formulations of the Green–Gauss the-
orem [12], one of them is the following. Let f, g : Ω ⊂
R3 → R be two integrable functions and Σ be the sur-
face (boundary) of the closed volume Ω . Then it holds∫

Ω

f(r)∇2g(r)dr = −
∫

Ω

∇f(r)∇g(r)dr

+
∮

Σ

f(r)∇g(r) · ndσ, (1)

where n is a normal unit vector to the surface Σ , di-
rected outwards and

∮
denotes the surface integral. For
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the special case f(r) ≡ 1 this theorem reduces to∫

Ω

∇2g(r)dr =
∮

Σ

∇g(r) · ndσ. (2)

Let assume that g(r) ≡ %(r) is the electron den-
sity of many-electron finite system, hence the integral∫
R3 %(r)dr must be finite and equal to the number of

electrons in the system.
Let us denote by ||v|| the length of vector v ∈ R3. It is

well known [3, 13] that for finite systems and for large
r = ||r|| the wave function Ψ(r) decreases exponentially,
i.e. Ψ(r) = Ce−αr, where C,α > 0. Hence, the electron
density behaves as %(r) = Ψ2(r) = C2e−2αr. If Ω is a
ball of radius r, then the surface Σ is a sphere of radius r.
For this case the integral on the right hand side of Eq. (2)
can be easily obtained

I(r) =
∮

Σ

∇g(r) · ndσ = −8παC2r2e−2αr. (3)

The limit of this integral is
lim

r→∞
I(r) = −8παC2 lim

r→∞
r2e−2αr = 0. (4)

Moreover, if the radius of the ball Ω is increased, then
Ω → R3. Hence, based on the above relation, we obtain∫

R3
∇2%(r)dr = 0. (5)

It means that the kinetic energy functional T for many-
-electron system does not need to account explicitly the
term proportional to

∫
R3 ∇2%(r)dr. As a consequence, in

the gradient expansion of the kinetic energy functional
T ≈ T0[%] + T1[∇%] + T2[∇2%] + . . . (6)

the terms proportional to T2[∇2%] can be omitted.

3. One-electron system

Let us denote by Ψ(r): R3 → R the real wave function
of one-electron system. Then, the kinetic energy of this
system is given by

T = −1
2

∫

R3
Ψ(r) ∇2Ψ(r) dr, (7)

and the electron density is defined as
%(r) = Ψ2(r). (8)

Applying the ∇2 operator to both sides of the above re-
lation one obtains

∇2%(r) ≡ ∇2Ψ2(r) = 2||∇Ψ(r)||2

+2Ψ(r) ∇2Ψ(r), (9)
where ||∇Ψ(r)|| denotes length of vector ∇Ψ(r). In-
tegrating the above equation over R3 and substituting
Eq. (7) we obtain∫

R3
∇2%(r)dr = 2

∫

R3
||∇Ψ(r)||2dr − 4T, (10)

hence

T =
1
2

∫

R3
||∇Ψ(r)||2dr − 1

4

∫

R3
∇2%(r)dr. (11)

Let us apply ∇ operator to both sides of Eq. (8)
∇%(r) ≡ ∇Ψ2(r) = 2Ψ(r) ∇Ψ(r). (12)

Taking square of both sides in the above equation and

substituting Eq. (8) we obtain
||∇%(r)||2 = 4Ψ2(r) ||∇Ψ(r)||2

= 4%(r) ||∇Ψ(r)||2. (13)
Inverting this relation we get

||∇Ψ(r)||2 =
||∇%(r)||2

4%(r)
. (14)

Finally, substituting Eq. (14) into Eq. (11) we get the
kinetic energy functional

T =
1
8

∫

R3

||∇%(r)||2
%(r)

dr − 1
4

∫

R3
∇2%(r)dr. (15)

This is an exact kinetic energy functional for one-electron
system where the electron density is defined by function
%(r): R3 → R. It follows from Eq. (15) that kinetic en-
ergy functional depends on electron density %(r), length
of gradient ||∇%(r)|| and laplacian ∇2%(r). From Sect. 2
it follows that the second term is equal to zero. Dropping
the second term in Eq. (15), the von Weizsäcker equation
is derived

T =
1
8

∫

R3

||∇%(r)||2
%(r)

dr. (16)

¿From the above discussion it follows that von Weizsäcker
equation is valid for any one-electron system.

4. Kinetic energy in DFT

In this section we provide the derivation of kinetic en-
ergy formula commonly applied in DFT. The derivation
is based on equations presented in the previous sections.
In DFT the kinetic energy of system containing N elec-
trons is given by

T = −1
2

N∑

i=1

∫

R3
Ψi(r) ∇2Ψi(r)dr, (17)

where Ψi(r): R3 → R for i = 1, . . . , N is set of occupied
one-electron Kohn–Sham eigenfunctions [2, 1, 11, 10, 3].
If each eigenfunction Ψi(r) is occupied by one electron,
then the electron charge distribution is defined as

%(r) =
N∑

i=1

Ψ2
i (r). (18)

Since the Laplace operator is linear, applying ∇2 to both
sides of the above equation, we obtain the analogous re-
lation to Eq. (9):

∇2%(r) = 2
N∑

i=1

||∇Ψi(r)||2

+2
N∑

i=1

Ψi(r) ∇2Ψi(r). (19)

Integrating over the space R3 and applying Eq. (5) one
obtains

N∑

i=1

∫

R3
Ψi(r) ∇2Ψi(r)dr

= −
N∑

i=1

∫

R3
||∇Ψi(r)||2dr. (20)
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Using Eq. (17) we get

T =
1
2

N∑

i=1

∫

R3
||∇Ψi(r)||2dr. (21)

The above formula is more convenient than Eq. (17),
since the degree of the differential operator is one (as
compared to ∇2 in Eq. (17)). This reformulation is
important when finite element method [14] or spectral
method [15] are applied to solve the Kohn–Sham equa-
tion [16].

5. Summary

We provided the short derivation of the von Weizsäcker
formula. The derivation is based on the definition of the
kinetic energy valid for any one-electron system. The
derivation does not use the matrix density formulation.
Moreover, it was shown that for finite system, contain-
ing any number of electrons, it holds

∫
R3 ∇2%(r)dr = 0.

Hence, the kinetic energy functional T for any system
does not need to account this term explicitly. Addition-
ally, convenient formula for kinetic energy is provided
which is particularly useful in finite element or spectral
method.
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