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Roughness Method to Estimate Fractal Dimension

A. BÃlachowski and K. Ruebenbauer∗
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A method based on the pattern roughness was introduced for determination of the fractal dimension and
tested for fractals like the Sierpiński carpet, the Sierpiński triangle, standard Cantor set, the Menger sponge and
the Sierpiński tetrahedron. It was tested for non-fractal pattern like two- and four-dimensional gray scale random
dust as well. It was found that for all these patterns the Hausdorff dimension is reproduced with relatively
high accuracy. Roughness method is based on simple, fast and easy to implement algorithm applicable in any
topological dimension. It is particularly suited for patterns being composed of the hierarchy of structures having
the same topological dimension as the space embedding them. It is applicable to “fuzzy” patterns with overlapping
structures, where other methods are useless. It is designed for pixelized structures, the latter structures resulting
as typical experimental data sets.

PACS numbers: 05.45.Df, 61.43.Hv

1. Introduction

Usually fractal dimension of the “classical” fractals
could be expressed in some analytical form and calculated
with any required accuracy [1]. The situation is quite
different for natural objects approximating some fractal
structures. Similar statement applies to the computer-
-generated structures, the latter structures being simi-
lar rather to the natural objects instead of being simi-
lar to the “classical” fractals. Many methods have been
invented to estimate fractal dimension of such objects
[2–5]. It seems that none of them is general, as the suc-
cessful choice of method depends on details of the fractal
in question. We are going to concentrate here on frac-
tals composed of the hierarchy of structures having the
same topological dimension as the space needed to embed
given fractal. Such structures are quite common, and on
the other hand, there are many “classical” fractals hav-
ing above properties as described in Ref. [1]. The word
“classical” is further used as shortened notation for non-
-random fractals being composed of the objects (hierar-
chy of structures) having the same topological dimension
as the hosting space and being exactly self-similar on all
scales.

The most popular method used to estimate fractal di-
mension for such objects is the box counting method [2].
However, this method has some limitations. It is very
hard to apply to the objects having “fuzzy” boundaries,
and it is practically useless in the case of overlapping

∗ corresponding author; e-mail: sfrueben@cyf-kr.edu.pl

structures. Overlapping structures are quite common
within the realm of natural objects, and fuzziness is al-
ways encountered for sufficiently large magnifications of
natural objects due to the limited resolution of the imag-
ing devices and real fuzziness of the natural objects.

We are proposing a method to estimate fractal dimen-
sion of such objects as mentioned above. It is based on
the simple concept of the object roughness seen at various
scales. The algorithm is simple, fast and widely applica-
ble to the hierarchical structures having the same topo-
logical dimension as the space embedding them. Some-
what similar approach to this problem has been suggested
by Zubimendi et al. [5]. Mandelbrot [1] suggested similar
idea as well. Roughness could have various meanings and
hence we are going to define precisely roughness in the
sense used within this contribution. A relation between
roughness and fractal dimension has been discussed pre-
viously by Mandelbrot [6].

The paper is organized as follows: Sect. 2 deals with
the definition of the roughness method as proposed here.
Section 3 is devoted to tests performed on the “classical”
fractals composed of the hierarchical structures in the
sense above defined. Finally, conclusions are drawn in
the last Sect. 4.

2. Roughness method

Generally, roughness could be defined in any met-
ric Euclidean space having finite topological dimension
D = 1, 2, . . . and particularly for functions taking on in-
teger values from the range [0; 2L−1], where L = 1, 2, . . .
stands for the number of bits describing content of the
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volume element called further pixel for brevity. Practi-
cally, all experimental or computer generated functions
could be transformed into such representation as defined
above. All volume elements are identical (they have the
same number of bits with the same meaning of each bit
for all pixels) and they form hypercubes with all edges
mutually orthogonal and of the same length. Hypercubes
fill all the space available and do not overlap one with
another. There are Nν hypercubes along each ν-th axis
aligned with one of the edges. Index ν = 1, 2, . . . , D enu-
merates uniquely particular dimension. Each hypercube
has 2D nearest neighbors except hypercubes lying on the
border of the considered part of the space. Hence, rough-
ness could be expressed as follows:

R =

[
2D

D∏
ν=1

(Nν − 2)

]−1

×
D∑

ν=1

Nν−1∑
nν=2

∑

k=±1

(
xnν

− xnν+k

2L − 1

)2

. (1)

The following condition has to be satisfied: Nν ≥ 3.
Index nν enumerates subsequent hypercubes along the
ν-th axis. On the other hand, the pixel content described
by integer has to satisfy conditions 0 ≤ xnν ≤ 2L − 1
and 0 ≤ xnν+k ≤ 2L − 1. One can simplify the above
definition to the similar form:

R =

[
D

D∏
ν=1

(Nν − 1)

]−1

×
D∑

ν=1

Nν−1∑
nν=1

(
xnν − xnν+1

2L − 1

)2

. (2)

For the last definition algorithm is generally faster and
it is sufficient to have Nν ≥ 2. Condition 0 ≤ xnν+1 ≤
2L − 1 has to be satisfied as well. Actually, for D = 1
and N1 ≥ 3 one has R ≡ R. Nearest neighbor hypercubes
have common “walls”, the latter having D − 1 topologi-
cal dimension. Both definitions lead to the real roughness
taking value from the range [0; 1]. Number of bits used
to calculate roughness amounts to

Nb = L

D∏
ν=1

Nν . (3)

Many experimental data sets satisfy above conditions and
therefore roughness could be calculated in a straightfor-
ward manner for them.

In order to use roughness R to estimate “fractal” di-
mension one needs series of patterns having all the same
sets of Nν ≥ 3 parameters and the same constant L ≥ 1,
albeit obtained at vastly different scales, i.e., having
all different pixel edge rλ > 0 size. Here the index
λ = 1, 2, . . . ,Λ enumerates subsequent patterns and the
number of patterns satisfies the condition Λ ≥ 3. Subse-
quent pixel edge sizes have to satisfy the following con-
dition: 0 < r1 < r2 < . . . < rΛ. One can calculate
roughness Rλ for each pattern and plot Yλ = ln(Rλ) ver-
sus Xλ = ln(rλ/r1) provided Rλ > 0 for each pattern λ.

If one obtains straight line Yλ = β + αXλ one can calcu-
late “fractal” dimension as d = D−|α| provided |α| ≤ D
[1, 7]. Actually, the choice of the logarithm base has no
effect on the parameter α provided it is positive and the
same for Xλ and Yλ. One can multiply ratio rλ/r1 by any
arbitrary positive and constant number without affecting
α as well. Hence, the abscissa of the above plot could be
chosen as the pixel edge size r > 0 provided the loga-
rithmic scale is used with any positive logarithm base.
Multiplication of roughness by the positive constant (the
same for all patterns) has no effect on the slope parame-
ter α as well. Plots described above are often called the
Richardson plots [1]. Other similar definitions of rough-
ness could be used as well as they lead to the same slope
of the Richardson plot, and the slope is the sole relevant
parameter to be determined. However, other definitions
require more complex algorithms.

The above algorithm is simple, fast and it could be ap-
plied to the majority of the experimental data sets. In
particular, it could be applied to the “fuzzy” patterns,
where other methods like the box counting method are
useless. This algorithm is applicable to patterns with
overlapping structures as well, where other methods sim-
ply fail.

3. Some tests of the roughness method

It is essential to test the above hypothesis for the use-
fulness. It has to produce linear Richardson plots with
the correct slopes for the fractal structures. An attempt
to perform rigorous proof is rather useless as the method
is intended to be applied to the experimental patterns,
the latter having none rigorous definition. The simplest
way to perform such tests is to apply the roughness
method to the fractals having well known fractal dimen-
sion in the Hausdorff sense [1]. One has to bear in mind
that “classical” fractals (as defined above) are exactly
self-similar on all scales, and therefore they do not exist
as real objects as nature is not invariant versus arbitrar-
ily large changes of scale. The same statement applies to
any computer-generated pattern. Hence, one has to start
from some smallest scale by definition of the “elementary
cell”, the latter being no longer divisible according to
the particular fractal algorithm. In fact, natural objects
have also small-scale limit due to the fact that matter is
composed of atoms. For some fractals like the Sierpiński
triangle one has to make suitable approximation while
defining “elementary cell” in order to fit into the pixel
scheme. It has to be remembered that real data are al-
ways pixelized in some way, and hence the pixel scheme
is enforced on them at some scale without will of the ex-
perimenter. Afterwards, one has to generate particular
fractal pattern according to the rules characteristic of the
fractal in question. This iterative process has some limit
due to the computer limitations as well. Natural objects
have similar limits, as they cannot be made arbitrarily
large. Usually “classical” fractals have natural scale fac-
tor embedded in the generation algorithm. For example,
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standard Cantor set and the Sierpiński carpet require in-
crease in the size along each dimension by factor three in
each iterative step, while the Sierpiński triangle has this
factor equal to two. Random dust has none natural scale
factor and it has no fractal properties, but it is charac-
terized by null “fractal” dimension as it is composed of
independent points. For such patterns like random dust
it is desirable to apply factor two in order to get as many
points as possible within limits of the scale range and
without violating of the pixel scheme. Number of ac-
cessible scale levels strongly depends on the topological
dimension required to generate particular fractal. For
large dimensions data volume increases very rapidly in
each iteration step.

Once the required pattern has been generated, one has
to make respective series of patterns in order to calcu-
late roughness for each of them. Such patterns could be
made averaging content of the adjacent pixels in accor-
dance with the particular scale factor, rounding resulting
average to the nearest integer and generating new pixel
replacing group of the previous pixels. The number of
pixels in each dimension is reduced by the scale factor
in each step of this iterative procedure until pattern is
too small to be used to calculate roughness. Each new
pixel is centered on the center of the previous group.
Such procedure simulates reduction of magnification for
the real patterns as each pixel of the next generation has
edge size increased by the scale factor in comparison with
the edge size of the pixel belonging to the previous gen-
eration. For series of patterns generated this way one
can define equivalent abscissa as S = N/(F l) provided
original pattern has the same number of pixels in all di-
mensions. The symbol N À 0 stands for the number
of pixels, along one of the dimensions, for the original
pattern, F > 0 denotes the scale factor (isotropic here),
and l = 0, 1, . . . enumerates subsequent iterations lead-
ing to the averaged patterns. For random dust and the
Sierpiński triangle F = 2, while for the Sierpiński carpet
and standard Cantor set F = 3. The scale factor F = 3
applies to the Menger sponge too, while for the Sierpiński
tetrahedron one has F = 2. A logarithmic scale has to
be used for this abscissa as well. A pixel belonging to the
next generation is an average of FD pixels of the previous
generation.

We have performed tests setting L = 8 (8 bits — 256
levels) for all patterns investigated. Three patterns with
D = 2 (planar), one pattern with D = 1 (linear), and
two with D = 3 (flat Euclidean space) have been inves-
tigated. For the two-dimensional random dust and the
Sierpiński triangle N = N1 = N2 = 2048 = 211 has
been used for the original patterns. In the case of the
Sierpiński carpet N = N1 = N2 = 2187 = 37 has been
set for the original pattern, while for the one-dimensional
standard Cantor set N = N1 = 177147 = 311 has been
applied to the original pattern. For the Menger sponge
N = N1 = N2 = N3 = 729 = 36 has been applied
to the original pattern. The Sierpiński tetrahedron was
evaluated setting N = N1 = N2 = N3 = 512 = 29.

Four-dimensional random dust has been treated using
N = N1 = N2 = N3 = N4 = 128 = 27. “Elemen-
tary cells” for the Sierpiński carpet, standard Cantor set
and the Menger sponge have been made of black (0) and
white (255) elements in the case of the original patterns.
Original random dust pattern has been generated using
random number generator with the flat distribution and
producing integers in the range [0; 255]. The “elementary
cell” of the original pattern approximating the Sierpiński
triangle is made of four pixels. Lower pixels have the
gray scale (64), while the upper pixels have the gray scale
(191). This is the best approximation to the original “el-
ementary triangle” (black) fitting into the white square
made of four pixels. Similar problem is encountered for
the Sierpiński tetrahedron. The “elementary cell” con-
sists here of eight pixels. Two lower pixels have the gray
scale (148), another pair of lower pixels has the gray scale
(213), while the four upper pixels split into two pairs hav-
ing the gray scale (240) and (254), respectively.

It is interesting to note that roughness equals unity for
the pattern made of the black and white hypercubes, the
latter ordered in the generalized chessboard-like fashion.
However, the first averaging with the scale factor equal to
two leads to the pattern having roughness equal to zero,
and further averaging does not change this roughness
anymore. The smallest possible chessboard-like pattern
useful to calculate the roughness R in two dimensions is
shown in Fig. 1 as a fragment of the larger pattern.

Fig. 1. Black (0) and white (255) chessboard-like pat-
tern (planar), the latter pattern useful for calculation of
the roughness R.

Generated original patterns for two-dimensional cases
are shown in Figs. 2 and 3 together with the correspond-
ing Richardson plots, the latter plots showing R versus S.
The Richardson plot for the standard Cantor set is shown
in Fig. 4. On the other hand, the Richardson plot of
the Menger sponge is shown in Fig. 5. The “elemen-
tary cell” transformation and the Richardson plot for the
Sierpiński tetrahedron is shown in Fig. 6. Finally, the
Richardson plot for the four-dimensional random dust is
shown in Fig. 7. One has to note that the linear behav-
ior of the Richardson plots is well obeyed except for the
largest pixels (smallest magnifications), where blurring is
strong enough to almost erase any details of the pattern.
These points lying in the lower left corners of the respec-
tive plots are excluded and they are not shown. For the
Sierpiński triangle one observes some deviation from lin-
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Fig. 2. Original random dust of the gray scale with
D = 2 and the Sierpiński carpet patterns (top) with the
corresponding Richardson plots (bottom).

Fig. 3. Original Sierpiński triangle pattern (left) and
Richardson plot obtained (right). Inset in the upper
right corner shows approximation used for the “elemen-
tary cell”. Let us note deviation from linearity due to
the approximation made while generating the “elemen-
tary cell”.

earity for the original pattern due to the approximation
used to fit pattern into the pixel scheme. The same be-
havior is seen for the Sierpiński tetrahedron. This point
lying in the upper right corner is shown, albeit it has been
excluded from the data analysis for both of these frac-
tals. Resulting slope parameters and fractal dimensions
are listed in Table. These parameters were obtained by
means of the standard linear regression fits to the linear
part of the respective Richardson plots. Two-dimensional
(planar) patterns are particularly important, as they usu-
ally represent some images.

Fig. 4. Richardson plot obtained for the standard Can-
tor set. Inset shows “elementary cell” and the first step
of the iterative procedure used to generate the original
pattern.

Fig. 5. Richardson plot obtained for the Menger
sponge. Inset shows “elementary cell” of this three-
-dimensional structure. White pixels (255) are shown
here as transparent.

Simulations described above show that the roughness
method reproduces fractal dimension of the typical frac-
tals with the reasonable accuracy despite limited range of
the scale. On the other hand, it is the simplest, most ef-
ficient and most widely applicable method in comparison

Fig. 6. Richardson plot obtained for the Sierpiński
tetrahedron. Inset shows “elementary cell” of this three-
-dimensional structure and the best approximation of
the “elementary cell” within the pixel scheme. The first
iterative step is shown schematically as well. Let us note
deviation from linearity due to this approximation.
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Fig. 7. Richardson plot obtained for the four-
-dimensional random dust of the gray scale.

TABLE
Fractal dimension obtained by the roughness method
in comparison with the corresponding Hausdorff di-
mension shown with the precision of four digits be-
yond the decimal point where applicable.

Fractal α
Roughness

dimension

Hausdorff

dimension

random dust

(non-fractal) D = 2
1.990(2) 0.010(2) 0

Sierpiński carpet 0.097(4) 1.903(4) 1.8928

Sierpiński triangle 0.428(3) 1.572(3) 1.5850

standard Cantor set 0.382(3) 0.618(3) 0.6309

Menger sponge 0.288(1) 2.712(1) 2.7268

Sierpiński tetrahedron 1.092(24) 1.908(24) 2

random dust

(non-fractal) D = 4
3.886(50) 0.114(50) 0

with other classical methods used to estimate fractal di-
mension. This method has not been reported previously
to our best knowledge as applicable to the fractal dimen-
sion problem — at least in the form outlined above. It is
sensitive to the departure from the ideal pattern as one
can see deviations from linearity either for the strongly
blurred patterns or upon having applied approximations
to the “exact” structure. It could be used to estimate
dimension of the non-fractal patterns like the random
dust gray scale pattern as well. One has to note that the
Sierpiński tetrahedron is somewhat special fractal as it
has fractal dimension equal to the topological dimension
of the embedded space (plane).

4. Conclusions

A method for estimation of the fractal dimension has
been proposed. It is based on the simple, fast and widely

applicable algorithm, the latter relying on the simple
concept of the pattern roughness. It has been tested
for typical fractals being a hierarchy of embedded struc-
tures with the same topological dimension as the hosting
space topological dimension. The Hausdorff dimension
has been reproduced with relatively high accuracy for
these fractals regardless of the topological dimension. It
seems that this method could be particularly useful for
the analysis of the two-dimensional gray scale patterns
like e.g. electron scanning microscope images. It has been
already applied to the analysis of the phase separation in
the iron–gold alloys as described in Refs. [8, 9]. For ex-
perimental patterns one can estimate fractal dimension
by making the Richardson plots of the roughness versus
homogeneous scale (the same pixel size along each of the
main axes), the latter scale varying from one to another
image of the same object. There is no need to have the
same number of pixels along each main axis, but these
numbers should not differ vastly.
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