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In this paper, we introduce a new method for calculation of energy levels in detail and give our results for
several iso-spectrum-level series as examples: [He] 2s2p 1P1, [He] 2s2p 3P0, [He] 2s2p 3P2, and [He] 2s3s 3S1 series
of Be-like sequence; [Ne] 3s23d 2D3/2 series and [Ne] 3s23d 2D5/2 series of Al-like sequences; [Ne] 4p 2P1/2 series,

[Ne] 5d 2D5/2 series, and [Ne] 6f 2F7/2 series of Na-like sequences. In the method I(Z) = Tlim(Z) − T (Z, n),
where I(Z), Tlim(Z), and T (Z, n) denote ionization potential, series limit, and energy level of a given member,
respectively. The expression of non-relativistic part of I(Z) is derived from weakest bound election potential
model theory and relativistic effects of I(Z) are included by using a six-order polynomial in Z. Our results are
compared with the experimental data and with those obtained by other theoretical method.

PACS numbers: 01.55.+b, 31.15.−p

1. Introduction
The energy levels are widely applied in many fields,

such as plasma diagnosis, astrophysics, laser develop-
ment, and analytical chemistry. Therefore, more and
more attention has been paid on calculations of high-
-precision energy levels of atoms and ions. Many theo-
retical methods have been developed in this field: multi-
configuration Hartree–Fock (MCHF) method [1–3], mul-
ticonfiguration Dirac–Hartree–Fock (MCDHF) method
[1–3], configuration interaction (CI) method [4–7], rel-
ativistic many-body perturbation theory (RMBPT)
[8–14], and weakest bound election potential model
(WBEPM) theory [15–23], etc.

In recent years, many excellent works have been done
by theoretical researchers. The MCHF method has been
widely used to calculate properties of atoms and ions in-
cluding energy levels. Irimia and Fischer reported energy
levels and transition probabilities of neutral argon using
both MCHF method and MCDHF method [1]. Fischer
and Tachiev also applied MCHF method to the study of
energy levels and lifetimes for the Be-like to Ne-like se-
quences [2]. Two years later, the same group reported
an extension of this work to the sequences with 11–18
electrons [3]. In their calculations, the MCHF approach
was used for obtaining the “best” radial functions for
the interacting terms and the relativistic effects were in-
cluded through the Breit–Pauli approximation. Dzuba
et al. used both Hartree–Fock (HF) and CI method to
study the energy levels and lifetimes of Nd(IV), Pm(IV),
Sm(IV), and Eu(IV) [4]. They also reported energy lev-
els of Ge, Sn, Pb [5] and barium and radium [6, 7]. They
started their calculations from the relativistic Hatree–
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Fock method and used CI method to treat the interaction
between valence electrons. Another powerful method in
this field is RMBPT. Yb-, Al-, Ga-like ions have been in-
vestigated by this method [8–10]. Energy levels of silver,
beryllium, magnesium, francium and zinc isoelectronic
sequences were also studied by this method [11–14]. The
core–valence correlations are included beyond the second-
or third-order of RMBPT. Since the WBEPM theory was
proposed [15], many studies have been performed to cal-
culate energy levels for atoms and ions [16–24]. In these
works, the authors used the concept of the spectrum-
-level-like series and a new formula taking perturbation
into account for calculation. Excellent results are ob-
tained in those works. Deviations between the theoreti-
cal results and experimental values are generally smaller
than 1 cm−1.

The purpose of this paper is to introduce another new
method to calculate energy levels proposed by one of au-
thors (N.W.Z), recently [25]. After introducing the con-
cept of iso-spectrum-level series, we give the results of
several iso-spectrum-level series including Be-, Al-, and
Na-like sequence as examples. According to the WBEPM
theory, the expression of nonrelativistic ionization poten-
tial is written as a function with two-order in Z. The
relativistic effects are included by using a six-order poly-
nomial in Z. We compare our results with the experi-
mental data and with those obtained by other theoretical
method.

2. The conception of the iso-spectrum-level
series

In our previous works, the conception of the iso-
-spectrum-level series has already been proposed and
used to calculate the ionization potential [26–29]. In or-
der to describe our method clearly, we introduce the con-
ception of the iso-spectrum-level series first. The concep-
tion of iso-electronic series is usually used in the study
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for the ionization energies of ground state. All mem-
bers (atom and ions) in an isoelectronic series have the
same electron configuration. As a result, the conception
of isoelectronic series is associated with the electron con-
figuration and cannot provide the information relating
to the terms or energy levels. However, for the study of
ground state, all systems lie in the lowest energy state.
Therefore, the conception of isoelectronic series is conve-
nient to investigate the regularities of ionization energies
of ground state. But for the atoms or ions with excited
electrons, each electron configuration usually gives rise
to several terms and each term splits into several spec-
tral levels further. Under this situation, the conception
of iso-electronic series is too rough to study the ener-
gies. Therefore, we introduce the conception of the iso-
-spectrum-level series study of the general regulations of
excited states of atoms. An iso-spectrum-level series is
a series of energy levels that is composed of energy lev-
els with the same spectral level symbol in a given iso-
-electronic series. For example, Be(I) ([He] 2s3p 3P1),
B(II) ([He] 2s3p 3P1), . . . , O(V) ([He] 2s3p 3P1), . . . ,
make up an iso-spectrum-level series named Be(I) ([He]
2s3p 3P1). From the definition, in a given iso-spectrum-
-level series, not only the electron configuration but also
the spectrum energy levels is defined. The only variable
parameter is the nuclear charge Z. Therefore, the ioniza-
tion energy of WBE in a given iso-spectrum-level series
could be approximate to a function of nuclear charge Z.

3. Theory and method

WBEPM theory is based on the consideration of the
dynamic successive ionization, the choice of zero energy
in quantum mechanics and the separation of the weakest
bound electron (WBE) and non-weakest bound electrons
(NWBE) [15, 16].

A free particle with N electrons and a nucleus of charge
+Ze in its ground state can give rise to N stages of ion-
ization. The ionized species in N successive ionization
stages are, respectively, neutral atom, unipositive ion,
. . . , +(Z − 1) ion. The conception of WBE is referred to
the definition of the ionization of a free particle: the ion-
ization potential for a free particle is defined as the energy
required completely to move the WBE from the particle.
Therefore, we classified the electrons in an atom or ion
system into two types, WBE and NWBE. The WBE is
the electron which is most weakly bound to the system
and excited or ionized first, the rest electrons are called
NWBE. In terms of excitation or ionization, the WBE in
a given system differs from the rest of the electrons in be-
havior. We can separate the WBE and the NWBE, and
the problem of the WBE can be treated as a one-electron
problem. Each electron in the N -electrons system acts
sooner or later as a WBE in the ionization procedure.
By removing the first, the second, . . . N -th WBE, an
N -electrons atom can give N stages of ionization. Each
stage of successive ionization processes corresponds to the
removal of a WBE from the related subsystem. Accurate

treatment of the WBE can provide accurate knowledge
of atomic and ionic properties.

As the ionization energy is defined as the energy re-
quired completely removing the weakest bound electron
from an atom or an ion in its ground or excited states,
the energy of a level in spectrum-level-like series [17–24]
can be written as

T (n) = Tlim − Iexp, (1)
where Tlim is the ionization limit for a spectrum-level-like
series. Iexp is the ionization energy of WBE. In order to
get the value of T (n) the value of Iexp is needed. In this
work, we use the theoretical value of ionization energy,
Ical, to replace the Iexp. Therefore, we get

T (n) = Tlim − Ical. (2)
We divided approximately the ionization energy into non-
relativistic part and relativistic part [30]

Ical = Inr + Ir, (3)
where Inr represents the nonrelativistic energy and Ir rep-
resents relativistic energy.

Now we employ the WBEPM theory to calculate the
nonrelativistic energy Inr.

According to WBEPM theory [15, 16], the Schrödinger
equation of WBE is[

−1
2
∇2

i + V (ri)
]

ϕi = εiϕi. (4)

In WBEPM theory the potential function V (ri) in Eq. (4)
may be written as (in atomic units)

V (ri) =
−Z ′

ri
+

d(d + 1) + 2dl

2r2
i

, (5)

where Z ′ is the effective nuclear charge, l is the angular
quantum number of WBE, and ri is the distance between
the WBEi and the nucleus. Parameter d is introduced
to modify the integral quantum number ni and angular
quantum number li into nonintegral n′i and l′i.

Substituting Eq. (5) into Eq. (4) and solving the
Schrödinger equation of the WBE, we can obtain the fol-
lowing expressions of energy eigenvalue and the radial
function:

εi = − Z
′2
i

2n
′2
i

(6)

and

R = C exp
(
−Z ′r

n′

)
rl′L2l′+1
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(
2Z ′r
n′

)
, (7)

where n′ is the effective principal quantum number with
n′ = n + d, l′ is the effective angular quantum num-
ber with l′ = l + d, C is the normalization factor, and
L2l′+1

n−l−1

(
2Z′r
n′

)
is the generalized Laguerre polynomial.

Because Eq. (4) is the non-relativistic one-electron
Schrödinger equation, the energy eigenvalue of WBE ob-
tained from Eq. (4) negative value of the non-relativistic
part of ionization energy, Inr:

Inr = −εi =
Z
′2
i

2n
′2
i

. (8)

For an iso-spectrum-level series we can write Eq. (1)
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into
T (Z, n) = Tlim(Z)− Iexp(Z), (9)

and the effective nuclear charge Z ′ was proposed as a
function concerning nuclear charge Z [15], that is

Z ′ =
√

(Z − σ)2 + g(Z − Z0), (10)
where Z0 is the nuclear charge of the first member in an
iso-spectrum-level series, for example, Z0 is the nuclear
charge of the Be atom for iso-spectrum-level series Be(I)
([He] 2s3p 3P1), σ is the screening constant of the first
member, and relatively increase factor g is a parameter
that indicates the effect on the effective nuclear charge
due to the increase in the nuclear charge in series.

The non-relativistic ionization energy can be written
as

Inr(Z) =
(Z − σ)2 + g(Z − Z0)

2n′2
. (11)

In order to obtain the values of parameters n′, σ, and
g, we considered the first difference of the non-relativistic
ionization potential. In an iso-spectrum-level series,
the plot of the first difference of the ionization poten-
tial, ∆Inr = Inr(Z + 1) − Inr(Z), vs. nuclear charge Z,
would be a straight line. Because the relativistic part
of ionization potential is quite small, the plot of the
first differences of the experimental ionization potential
∆Iexp = Iexp(Z +1)−Iexp(Z) vs. nuclear charge Z could
be approximated to the plot of the first difference of the
ionization potential, ∆Inr = Inr(Z + 1)− Inr(Z), vs. nu-
clear charge Z. In this work, the experimental data are
taken from Ref. [31]. Therefore, the effective principle
quantum number n′ can be treated as a constant ap-
proximately, and can be obtained from the plot of ∆Iexp

and nuclear charge Z. The screening constant of the
first member σ and the relatively increase factor g can
be calculated later. Therefore, the energy levels can be
obtained from the following equation:

T (Z, n) ≈ Tlim(Z)− (Z − σ)2 + g(Z − Z0)
2n′2

. (12)

As Z2 is the highest power of Eq. (12), the relativis-
tic effects such as mass velocity, the Darwin term, and

the spin–orbit term cannot be included completely in
Eq. (12). In order to get more accurate energies, the rela-
tivistic effects must be taken into account. As mentioned
above, in a given iso-spectrum-level series, the only vari-
able parameter is the nuclear charge Z. Therefore, in this
work, the relativistic energies are presented as a univari-
ant function of a six-order polynomial in nuclear charge

Ir(Z) =
6∑
0

aiZ
i. (13)

We considered the deviations between experimental
ionization potential Iexp(Z) and the ionization potential
Inr(Z) calculated from Eq. (11) are equal to the relativis-
tic part Ir(Z). Here experimental values of ionization
potential are taken from NIST data base [31]. By fitting
deviations Iexp(Z) − Inr(Z) to Eq. (13), we can obtain
the values of coefficients ai (i = 0–6). The theoretical
value of ionization energy can be expressed as the follow-
ing equation:

Ical(Z) =
(Z − σ)2 + g(Z − Z0)

2n′2
+

6∑
0

aiZ
i. (14)

Then for an iso-spectrum-level series, we obtain
T (n) = Tlim

−
[

(Z − σ)2 + g(Z − Z0)
2n′2

+
6∑
0

aiZ
i

]
. (15)

As the Z is determined for a given member, Eq. (14) re-
duces as Eq. (2) and one can calculate T (n) through Ical

and Tlim.

4. Results and discussion

We studied the energy levels of iso-spectrum-level se-
ries along Be-, Al-, and Na-like sequences using the
method mentioned above. The parameters needed in
Eq. (15) are listed in Tables I–II, and the results of this
work are listed in Tables III–IX.

TABLE I

Parameters of Eq. (14) for [He] 2s2p 1P1; [He] 2s2p 3P0; [He] 2s2p 3P2;
and [He] 2s3s 3S1 series of Be-like sequences.

Parameters [He] 2s2p 1P1 [He] 2s2p 3P0 [He] 2s2p 3P2 [He] 2s3s 3S1

σ 2.91379 2.61381 2.60991 2.62907

g 0.397358 0.295579 0.32755 0.338591

n′ 1.99205 1.9906 1.99627 2.98728

a0 73035.1 22114.3 24315.3 11693.9

a1 −43659.7 −14188 −14082 −7217.97

a2 9724.99 3392.89 2996.71 1634.36

a3 −1062.34 −388.985 −310.527 −173.436

a4 61.5715 22.9618 17.0618 9.2005

a5 −1.81346 −0.679121 −0.475133 −0.236533

a6 0.0212893 0.00817741 0.00520787 0.00243893
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TABLE II

Parameters of Eq. (14) for [Ne] 3s23d 2D3/2 series, [Ne] 3s23d 2D5/2 series, and [Ne]

3s23d 2D5/2 series of Al-like sequences and [Ne] 4p 2P1/2 series, [Ne] 5d 2D5/2 series,

and [Ne] 6f 2F7/2 series of Na-like sequences.

Parameters Al-like sequences Na-like sequences

[Ne] 3s23d 2D3/2 [Ne] 3s23d 2D5/2 [Ne] 4p 2P1/2 [Ne] 5d 2D5/2 [Ne] 6f 2F7/2

σ 11.9176 11.9172 9.76373 10.0198 10.0016

g 0.0958325 0.0994782 0.640162 −0.0152469 −0.00462789

n′ 2.84873 2.84992 3.87277 4.88813 5.98929

a0 20494300 17658700 646086 −93157 1920.37

a1 6179120 5245450 199379 40195.8 −508.401

a2 764622 638337 24607.5 −6764.28 38.3766

a3 49786.7 40807.9 1561.9 570.524 0.785963

a4 1801.3 1447.43 54.3212 −25.5031 −0.240012

a5 34.3498 27.0199 0.994358 0.575745 0.0110767

a6 0.269627 0.207276 0.00749563 −0.00520289 −0.000161941

TABLE III

Energy levels [cm−1] for the [He] 2s2p 1P1

series of Be-like sequences.

Z
Experimental

results [31]

Present

results

MBPT

method [32]

4 42565.4 42566.8 38316

5 73396.5 73326.2 70046

6 102352 102472 99710

7 130694 130746 128534

8 158798 158722 156979

9 186844 186739 185279

10 214952 214950 213581

11 243208 243541 241993

12 271687 270861 270607

13 300490 300947 299511

14 329679 330319 328790

15 359343 359247 358537

16 389583 388965 388827

17 420501 419469 419799

18 452212 450993 451567

19 484800 486375 484250

20 518620 519007 517980

21 553440 546768 552911

22 589692 589446 589206

23 627500 626535 627054

24 667080 667130 666658

TABLE IV

Energy levels [cm−1] for the [He] 2s2p 3P0

series of Be-like sequences.

Z
Experimental

results [31]

Present

results

MBPT

method [32]

4 21978.3 22008.5 20610

5 37335.5 37285.2 36624

6 52367.1 52354.3 51916

7 67209.2 67206.9 66898

8 81942.5 81946.8 81718

9 96590 96649.6 96447

10 111253 111347 111128

11 125880 126189 125785

12 140504 139525 140437

13 155148 155399 155095

14 169802 170310 169765

15 184478 184461 184456

16 199181 198973 199145

17 213913 213671 213877

18 228674 228580 228649

19 243520 246307 243460

20 258290 260020 258304

21 273200 267420 273185

22 288190 288209 288103

23 303100 301950 303062

24 318030 318023 318076
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TABLE V

Energy levels [cm−1] for the [He] 2s2p 3P2

series of Be-like sequences.

Z
Experimental

results [31]

Present

results

MBPT

method [32]

4 21981.3 22017.5 20614

5 37357.8 37293.4 36648

6 52447.1 52433.7 51997

7 67416.3 67424.9 67107

8 82385.3 82400.1 82164

9 97427 97486.8 97287

10 112702 112784 112578

11 128218 128514 128128

12 144091 143108 144030

13 160429 160691 160381

14 177318 177842 177281

15 194856 194855 194841

16 213182 212945 213157

17 232413 232050 232389

18 252683 252330 252668

19 274090 276562 274133

20 296950 298132 296932

21 321240 315023 321230

22 347260 347297 347198

23 375000 374979 375029

24 405020 408026 404922

Table I presents the parameters for the Be-like series
including [He] 2s2p 1P1; [He] 2s2p 3P0; [He] 2s2p 3P2;
and [He] 2s3s 3S1. For these series, the experimental
data from Z = 4 to Z = 16 are used to obtain the pa-
rameters n′, σ, and g. The experimental data are taken
from Ref. [31]. The effective principle quantum number
n′ is obtained from the first differences of Iexp(Z). σ is
the screening constant of the first member of a given iso-
-spectrum-level series, and we calculated it from Eq. (12).
g is called relative increase factor which indicates the ef-
fect on the effective nuclear charge. Each member in
a iso-spectrum-level series is used to obtain the relative
gi, and g is the arithmetical average of the gi. When
obtained the parameters ai (i = 0–6) from the least-
-squares fitting, Z = 20, 22, 24 are added for [He] 2s2p
1P1 series; Z = 22, 24 are added for [He] 2s2p 3P0 se-
ries; Z = 22, 23 are added for [He] 2s2p 3P2 series; and
Z = 22, 24 are added for [He] 2s3s 3S1 series. Results
of these Be-like series are listed in Tables III–VI. All the
energies are given in cm−1 unit. We compared our re-
sults with the experimental data and those obtained by
Safronova et al. [32, 33]. In each table, column 1 is the
nuclear charge of every member of a given iso-spectrum-
level series. Column 2 lists the experimental data taken
from the NIST data base [31]. The NIST collected ac-
cepted data were obtained by different authors all around
the world and critically evaluated the reliability of those

TABLE VI

Energy levels [cm−1] for the [He] 2s3s 3S1

series of Be-like sequences.

Z
Experimental

results [31]

Present

results

MBPT

method [33]

4 52080.9 52086

5 129774 129765

6 238213 238221 238878

7 377285 377274 377662

8 546973 546946 547283

9 747284 747290 747571

10 978300 978355 978538

11 1239974 1240330 1240225

12 1532450 1531590 1532687

13 1855760 1856250 1855990

14 2210700 2210810 2210204

15 2595600 2595510 2595410

16 3011500 3011470 3011652

17 3458700 3458540 3459100

18 3936770 3937848

19 4448800 4447996

20 4987890 4989632

21 5551910 5562939

22 6160800 6160810 6167992

23 6794530 6804958

24 7463000 7463000 7473998

TABLE VII

Energy levels [cm−1] for the [Ne] 3s23d
2D3/2 series of Al-like sequences.

Z
Experimental

results [31]

Present

results

MBPT

method [9]

13 32435.5 32402.5

14 79338.5 79278.3

15 116875 117487

16 152133 151047

17 185863 186753

18 218593 217892 217980

19 250663 250834

20 282356 283097 283270

21 313860 314016

22 345315 343574 344199

23 376897 378044

24 408640 408743 407623

25 440725 440180

26 473223 473116 472279

27 506230 507436

28 539839 539313 538960

29 574180 574190
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TABLE VIII

Energy levels [cm−1] for the [Ne] 3s23d
2D5/2 series of Al-like sequences.

Z
Experimental

results [31]

Present

results

MBPT

method [9]

13 32436.8 32443.4

14 79355 79171.4

15 116886 117548

16 152147 151180

17 185891 186808

18 218653 217838 218030

19 250781 250792

20 282577 283282 283288

21 314214 314627

22 345859 344682 344726

23 377650 379521

24 409741 410272 408710

25 442220 441401

26 475202 473948 408710

27 508793 508611

28 543107 543184 542192

29 578243 585846

TABLE IX
Energy levels [cm−1] for the [Ne] 4p 2P1/2 series; [Ne]
5d 2D5/2 series; and [Ne] 6f 2F7/2 series of Na-like
sequences.

Z [Ne] 4p 2P1/2 [Ne] 5d 2D5/2 [Ne] 6f 2F7/2

Texp[31] Tcal Texp[31] Tcal Texp[31] Tcal

11 30267 30277.8 37036.8 37033.9 38399.8 38399.1

12 80619.5 80580.9 103420 103431 109062 109064

13 143633 143666 188878 188866 201971 201970

14 218267 218289 291498 291495 315230 315228

15 304161 304140 410639 410649 448090 448090

16 401169 401134 546059 546058 600189 600194

17 509197 509228 697619 697616 771346 771343

18 628219 628386 865252 865294 961470 961431

19 758262 758597 1049130 1049130 1170440 1170430

20 899290 899775 1249030 1249080 1398440 1398280

21 1051640 1051640 1465130 1464910 1644980 1644730

22 1214390 1215030 1697480 1697480 1910650 1910650

23 1388410 1389190 1946500 1946010 2195100 2195300

24 1573840 1574350 2211080 2210730 2499260 2498930

25 1770400 1770440 2491700 2491540 2821800 2821490

26 1977650 1977630 2788610 2788610 3163190 3163140

27 2196500 2196500 3103000 3102610 3524500 3524500

28 2426100 2426760 3434600 3433420 3906100 3905340

29 2667490 2667620 3780600 3780600 4305000 4305000

30 2920300 2920300 4145000 4145940 4724800 4724920

31 3184600 3183920 4526100 4529430 5163500 5164580

data. Therefore, we took the data taken from the NIST
data base for comparison. Column 3 lists the results ob-
tained using WBEPM theory. The results obtained by
Safronova et al. are contained in column 4. Using the
RMBPT, Ref. [32] reported the energy levels of n = 2
states of berylium-like ions with nuclear charges rang-
ing from Z = 4–100 [32]. In their calculations, both the
Coulomb interaction and the Breit–Coulomb interaction
are carried out to the second order. In the next year, the
same group extended the theory to study the 2l3l′ states
of berylium-like ions. 16 even-parity (2s3s, 2p3p, 2s3d)
excited states and 20 odd-parity (2s3p, 2p3s, 2p3d) ex-
cited states were studied in their work [33]. In general,
their results are in good agreement with experimental
data. Most deviations are smaller than 1000 cm−1, when
several of them are 1000–4000 cm−1 and only a few are
more than 4000 cm−1. The comparison shows that our
results are at the same level with Safronova’s ones. Ta-
ble II gives the parameters for the two Al-like series and
three Na-like series. The energy levels of these five series
are listed in Tables VII–IX. For two Al-like series, the
experimental data from Z = 13 to Z = 22 are used to
obtain the parameters n′, σ, and g. When we obtained
the parameters ai (i = 0–6) from the least-squares fit-
ting, Z = 23, 26, 29 are added for [Ne] 3s23d 2D3/2 series
and Z = 24, 27, 28 are added for [Ne] 3s23d 2D5/2 series.
The results taken from Ref. [9] are given for compari-
son. For three Na-like series, the experimental data from
Z = 11 to Z = 17 are used to obtain the parameters
n′, σ, and g. When obtained the parameters ai (i = 0–6)
from the least-squares fitting, Z = 21, 27, 30 are added
for [Ne] 4p 2P1/2 series; Z = 22, 26, 29 are added for [Ne]
5d 2D5/2 series; and Z = 22, 27, 29 are added for [Ne] 6f
2F7/2 series.

The main source of error in the present method is the
incomplete treatment of relativistic effects. We find that
the deviations between nonrelativistic energies and the
experimental data show an increasing trend with the in-
crease in Z along the iso-spectrum-level series. That is
because the relativistic effects on the radial wave func-
tions become more evident for high Z. Although the
relative deviations caused by relativistic effects are very
small, the absolute deviations will be little large ones. In
present work, in order to improve the accuracy of our re-
sults, the relativistic corrections of an iso-spectrum-level
series are included by a six-order polynomial in Z. By
including the relativistic effects, deviations between our
results and the experimental data become much smaller.
However, this treatment is successful at present calcu-
lation. But for ions with much higher nuclear charge
Z, the more precise consideration of relativistic effects is
necessary.

In conclusion, employing the WBEPM theory, we cal-
culated the energies for Be-, Al-, and Na-like sequence.
Equation (11) is derived to calculate the non-relativistic
energies, and the relativistic corrections are taken into
account by a six-order polynomial in nuclear charge Z.
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The present results are compared with available experi-
mental data, and good agreements are obtained from the
comparisons.
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