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Researchers calculated the electronic band energy of the carbon nanotube with some special form of crystalline
potentials which yield to inaccurate equations. We thus modified the orthogonalized-plane-wave and tight binding
methods. These methods are employed to introduce a matrix of carbon nanotube band energy.
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1. Introduction

Information technology is resulting from incredibly
fast advances in electronics and computing during the
last decades. Today, the electronics industry is pro-
ducing metal-oxide-semiconductor field-effect transistors
(MOSFETs) with critical dimensions of about 100 nm,
and projections anticipate devices with minimum future
sizes of around 50 nm in the year 2009 [1–10]. How-
ever, some critical technological barriers and fundamen-
tal limitations to size reduction are threatening the use
of orthogonalized-plane-wave (OPW) method for calcu-
lation of band energy. The main difficulty with current
crystalline potentials resides quite simply in considering
electrons of carbon atoms as independent particles.

One approach to overcoming these impending barri-
ers involves finding on evaluating the potential of carbon
nanotubes (CNTs) as the basis of a future nanoelectron-
ics technology. Single-walled CNT (SWCNTs) are ma-
terials with unique properties. They have several mil-
limeters in length and are strongly bonded covalent ma-
terials. Because of their extremely small diameter, the
OPW method should be modified and completed with
tight binding (TB) method due to the overlapping of
wave function of electrons. The procedure is to augment
the basis set of present method by including wave func-
tions which are OPWs between nuclei of carbon atoms
but represent modified Bloch waves near the nuclei. It
means that by scaling the CNT dimension, the carbon
atoms come close to each other and change the band en-
ergy. Thus, by using Ritz variational method [11], we
have modified the band energy.

2. Modifications of OPW method

We consider Schrödinger equation as below[
− ~

2

2m
+ V (r)

]
ψ(r) = Eψ(r),
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where V (r) is crystalline potential and ψ(r) is the wave
function of an electron in CNT structure. As with other
variational methods, a trial wave function, ψ(r), is tested
on the system. In the Ritz method [12], the minimizing
element in the n-th approximation is sought in the linear
hull of the first n coordinate elements. The Ritz ansatz
function is a linear combination of N orbitals. Based on
linear combination of atomic orbital (LCAO) approxima-
tion, ψ(r) is

ψ(r) =
∑

j

φj(r).

The eigenvalues and eigenvectors can be found with
finding a solution of the Ritz method. It is widely ap-
plied when solving eigenvalue problems, boundary value
problems and OPW equations in general. The trial wave
function will always give an expectation value larger than
the ground energy (or at least, equal to it). It is known
to be orthogonal to the ground state,

Hij = 〈φi(r) | H | φj(r)〉, (1)

Pij = 〈φi(r) | φj(r)〉, (2)
where j = 1, 2, 3, . . . , N and N is the number of ground
wave functions. Thus the associated equation is written
by the following expression:∑

i

(Hij , EPij)Ci = 0. (3)

The band energy E(k) can be obtained by the Ritz
method which is based on a variational determination of
eigenvalues

det(Hij , EPij) = 0. (4)

It is clear that there is an intense overlapping between
electron wave functions of CNT when carbon atoms come
close to each other. For this purpose we split ground
OPW functions into two sections, a plane wave between
atoms and u(k, r) (new wave functions) near to the
atoms, i.e.:

φi(r) = Aeiki·r −
∑

s

Csus(ki, r). (5)
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An approximation for the wave function of state can
be obtained by finding the coefficients Csus(ki) from the
corresponding secular equation

Csus(ki) = A

∫
u∗s(ki, r)eiki·rd3r. (6)

By inserting Eq. (6) into Eq. (5), we have

φi(r) = A

[
eiki·r −

∑
s

〈us(ki, r)eiki·r〉us(ki, r)

]
. (7)

Now, the matrix array of OPW results by
Hij − EPij = 〈φi(r) | H | φj(r)〉 − E〈φi(r) | φj(r)〉.

By doing series of calculations, the matrix arrays are
Mij = (ki · kj − E)δij + Vij

+
∑

s

[E − Es(k)]CsiCsj , (8)

where Vij are the coefficients of the Fourier expansion of
a potential function.

3. An alternative method of electronic
band structure

As one can see in Eq. (8), Vij indicate that there are
no interactions between electrons of carbon atoms, i.e.,
each electron is imagined as a nearly free electron. Ob-
viously, the above assumptions cannot explain the elec-
tron’s behavior when carbon atoms come together like
d-layer electrons.

In this case we deform new wave function based
on orthogonalized-plane-wave and tight binding meth-
ods [13]. Therefore, u(ki, r) should be modified based
on TB and OPW methods. For N unit cells in CNTs,
u(ki, r) can be written by the following expression:

u(ki, r) =
1√
N

∑
n=1

eiki·Rnψnlm(r −Rn), (9)

where Rn is the distance between two nearest neighbor
carbon atoms. It yields new orthogonalized coefficients.
We consider a correction term as Lij ,

Mij = (ki · kj − E)δij + Lij . (10)
By using separable variables method, the atomic wave

functions, ψnlm(r), split into a set of radial Rnl(r), az-
imuth angle part φm(ϕ) and associated Legendre equa-
tion Plm(x), with x = cos θ.

We show that Es(k) ' Enl as a special band energy of
SWCNT electrons in which

Lij = Vij + 4πA
∑

n,l

(2l + 1)Pl(ki,kj)(E − Enl)

× a∗nl(ki)anl(kj), (11)
where anl can be determined by using the spherical Bessel
functions, jl, as below

anl(ki) =
∫ ∞

0

jl(k′)rRnl(r)r2d3r. (12)

From Refs. [11, 12, 14–18], ψ(r) can be written as
below

ψ(r) =
∑

i

Ci(ki)φ(k′, r) +
∑

s

as(k)us(k, r), (13)

where as, ci coefficients are atom coordinate elements in
the Ritz variational method [12]. We separate Eq. (13)
into two parts, self atom and the nearest atoms of con-
cern atom, i.e.,

us(k, r) =
∑

n

eik·Rnφs(r −Rn)

−
∑

s′
bss′ψs′(r), (14)

where

bss′ =
∫ ∞

0

ψs′(r)us(k, r)d3r. (15)

Therefore the electronic band energy is determined by
the following equation:

det | H − EP |= 0, (16)
where(

HOPW
ij His

H†
is Hss

)
, (17)

(
POPW

ij Pis

P †is Pss

)
. (18)

Finally, the overlapping wave functions of SWCNTs is
demonstrated by H and P matrices,

His =
∫ ∞

0

φi(r)Hus(k, r)d3r −
∑

q

Eqaqbsq,

Hss′ =
∫ ∞

0

φi(r)us(k, r)Hus′(k, r)d3r

−
∑

q

Eqbsqbs′q, (19)

and

Pis =
∫ ∞

0

φi(r)us(k, r)d3r −
∑

q

Cqbsq,

Pss′ =
∫ ∞

0

φi(r)us(k, r)us′(k, r)d3r

−
∑

q

bsqbs′q, (20)

where

bsq =
∑

n

eik·Rn

∫ ∞

0

ψq(r)φs(r −Rn)d3r. (21)

4. Conclusion

We have demonstrated the series of calculations based
on the Ritz variational, OPW and TB methods. We have
found a reliable matrix which can describe the CNT elec-
tron behavior, correctly. In this method, there is no limi-
tation on crystalline potential of CNT structure, so it can
be suggested for evaluating the electronic band energy of
SWCNTs.
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