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On Surface Waves in Materials with Negative Poisson Ratio
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True surface wave, i.e. a resonance with infinite lifetime is found within a bulk band in a model of thin planar
layer coating a continuous auxetic substrate. Conditions for the existence of this wave are given.

PACS numbers:

1. Introduction

Auxetics are the materials that get fatter when
stretched. This counterintuitive property is quantita-
tively rendered by a negative Poisson ratio. The lat-
ter is defined as the quotient of the linear perpendicular
contraction to the expansion parallel to the axis of an
applied uniaxial tensile stress. In fact, there can be two
Poisson’s ratios in low symmetry materials so that the
material may expand in one direction perpendicular to
the stress axis and at the same time shrink in another
perpendicular direction. Materials are called full auxet-
ics when both Poisson ratios are negative and auxetics
if only one of them is negative. Negative Poisson ratio
is found in crystals [1], in biological tissues [2] and in
synthetic materials such as foams [3]. Particular interest
for auxetics comes from medical engineering where such
materials may serve as arterial prostheses [4], anchors for
suture, muscles and ligaments, hip arthroplastic materi-
als and media controlling release of healing agents [5].

2. The model

In this note we study the dynamics of a planar sur-
face in an isotropic auxetic treated in the continuum ap-
proximation. All the elastic constants Cnmkl of isotropic
materials are expressed by two parameters: the Young
modulus E and the Poisson ratio σ:

Cnmkl =
E

(1 + σ)

×
[

σ

(1− 2σ)
δnmδkl +

1
2
(δnkδml + δnlδmk)

]
. (1)

When free of external stresses, any isotropic material is
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mechanically stable if
E > 0, (2)

and
−1 < σ < 1/2. (3)

All the acoustic waves in the isotropic media are either
purely longitudinal or transverse. They propagate at the
phase speeds cL and cT, respectively

cL =
√

C1111/ρ =

√
E

ρ

(1− σ)
(1 + σ)(1− 2σ)

, (4)

cT =
√

C1212/ρ =

√
E

ρ

1
2(1 + σ)

. (5)

Both phase speeds tend to infinity in the limit of stabil-
ity σ → −1, where the ratio cT/cL takes its maximum
value 1/

√
2. In systems subject to an external stress the

Poisson ratio has no limitation [6]. The increase in the
elastic stretch C1111 and shear C1212 moduli with increas-
ing negative Poisson ratio have important technological
consequences.

In the half space x3 > 0 occupied by the material the
vibrations of the medium with a planar surface satisfy
the Christoffel equations of motion

ρ
∂2un

∂t2
=

3∑

m,k,l=1

Cnmkl
∂2uk

∂xm∂xl
, (6)

where un, n = 1, . . . 3, are components of displacement.
The surface itself imposes appropriate boundary condi-
tions. In the present work the conditions read

ρs
∂2u1

∂t2
= Es

∂2u1

∂x2
1

+
E

1 + σ

(
∂u1

∂x3
+

∂u3

∂x1

)
, (7)

(513)
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ρs
∂2u3

∂t2
= As

∂2u3

∂x2
1

+
E

(1 + σ)(1− 2σ)

×
[
(1− σ)

∂u3

∂x3
+ σ

∂u1

∂x1

]
. (8)

They model an infinitely thin layer of planar density ρs

of the stretch modulus in the surface plane Es and of the
surface bending modulus As. The latter quantity is usu-
ally neglected in the theory of thin plates [7] but it must
be taken into account for some metamaterials. In fact,
many auxetic materials are artificial and are composed
of some rigid elements [1–6]. The same may concern the
surface layer.

3. Results

Figure 1 presents an example of a material in which
the bending modulus clearly exceeds the stretch modu-
lus. Such examples motivate the use of the first term on
the right hand side of Eq. (8). The reference system is
chosen so that the x1 axis lies along the wave vector com-
ponent parallel to the surface, whereas x3 the direction
perpendicular to the surface into the bulk material. For
the moment only saggital waves are considered.

Fig. 1. Structure (Nuernberg scissors) of rigid rods
connected by articulations indicated by grey circles.
Structure is easy to stretch but hard to bend. Thus,
bending modulus exceeds Young’s modulus.

General solution of the equations of motion (Eq. (6))
with the boundary conditions (Eqs. (7) and (8)) have a
form of waves

ui(x1, x3, t) = ALuL
i exp(−iωt + k1x1 + kL

3 x3)

+ATuT
i exp(−iωt + k1x1 + kT

3 x3), i = 1, 3, (9)
where the components of the unit vectors uL and uT sat-
isfy the relations uL

3/uL
1 = −k1/kT

3 and uL
3/uL

1 = kL
3 /k1,

while the components of the wave vectors perpendicular
to the surface kL

3 and kT
3 are defined by the dispersion

relations ω2 = c2
L

[
k2
1 + (kL

3 )2
]

and ω2 = c2
T

[
k2
1 + (kT

3 )2
]
.

The regions where kL
3 or kT

3 are real are called bulk bands.
The solutions of Eqs. (7) and (8) for the amplitudes AL

and AT, if they exist at all, then show complex frequen-
cies ω = Reω − iImω. Such solutions describe surface
resonances and the quantities 1/Imω correspond to their
lifetimes. Outside the bulk bands, where both kL

3 and kT
3

are purely imaginary, any possible solution of Eqs. (7)
and (8) with real frequency corresponds to a true surface
wave.

An interesting property of the present model is that at
specific parameters of the surface and of the bulk a true

surface wave, i.e. a resonance with infinite lifetime may
occur within bulk band. The conditions for the existence
of this exceptional surface wave (ESW) can be found by
inserting the wave ansatz (Eq. (9)) into Eqs. (7) and (8)
in the region where kT

3 is real and kL
3 is imaginary and by

requiring that AT = 0. Then the wave is a real surface
wave, although its frequency is placed in the bulk band
of transverse waves. The system of equations resulting
from the above conditions reads

1− σ2

2σ
(γES − γAS)(dκL)2 +

1 + σ

2σ

×
[
1− σ

1 + σ
− 2γAS(1− 2σ) + γES(1− σ)

]
dκL + 1

= 0 (10)
and

(k1d)2 =
1

1− cls/c2
L

[
(κLd)2 + 2κLd

(
1− 2σ

1− σ

)]
, (11)

where γES = Esρ
Eρs

, γAS = Asρ/Eρs and d = ρs/ρ is the
layer thickness.

Fig. 2. Bulk band (gray) and dispersion curves of sur-
face waves at presence of ESW (a). Imaginary part of
frequency along dispersion curve (continuous line in up-
per panel) of surface waves and resonances where ESW
occurs (b).

Figure 2 shows the bulk bands and the dispersion
curves of the surface waves in the present model with
parameters ensuring the ESW. The Poisson ratio of the
bulk medium is negative. The imaginary part of the fre-
quency of the surface resonance within the bulk band of
transverse waves vanishes at the point of ESW. A con-
sequence of a narrow resonance within the bulk band
is that the reflection coefficient of the transverse wave
coming from the bulk undergoes strong variation. This
is seen in Fig. 3. A very strong reflection coefficient cor-
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Fig. 3. Amplitude reflection coefficients of reflected
transverse (SRT) and longitudinal (SRL) waves as func-
tions of incidence angle of transverse incident wave po-
larized in incidence plane for three frequencies close to
that corresponding to ESW. The reflection coefficient
SRT lies practically on the same curve in all the cases.

responds to the incoming wave being practically directed
to the surface. Practical consequences of ESW are under
studies.
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