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We discuss the finite-temperature phase diagram in three-dimensional Bose–Hubbard model relevant for the
Bose–Einstein condensates in optical lattices, by employing U(1) quantum rotor approach and the topologically
constrained path integral, that includes a summation over U(1) topological charge. The effective action formalism
allows us to formulate a problem in the phase only action and obtain analytical formulae for the critical lines
beyond mean-field theory.
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1. Introduction

The quantum phase transitions of the Bose–Einstein
condensates placed into the lowest vibrational level of
single wells of an optical lattice in the strict sense can ex-
ist only at temperature T = 0 [1–3]. However, in typical
experimental situations we must take into consideration
thermal fluctuations in the particle number per site. The
presence of the finite-temperature indicates the nonzero
value of the compressibility and thus only an approximate
Mott phase exists. The experimental data only signals
that the system nears a quantum phase transition if the
temperature is extrapolated to zero. What the experi-
ments really observe is a transition from the superfluid
to the normal liquid whose compressibility is very close
to zero and the system is practically a Mott insulator.

2. Model

We start with the Bose–Hubbard (BH) Hamiltonian

H =
U

2

∑

i

n2
i −

∑

〈i,j〉
tija

†
iaj − µ̄

∑

i

ni, (1)

where tij is the hopping matrix element with
the dispersion for the simple cubic lattice tk =
2t (cos k1 + cos k2 + cos k3), µ̄/U = µ/U + 1/2 is the
shifted reduced chemical potential which controls the
number of bosons, and U > 0 is the on-site repulsion.
Furthermore, a†i and aj stand for the bosonic creation
and annihilation operators that obey the canonical com-
mutation relations [ai, a

†
j ] = δij , where ni = a†iai is the

boson number operator on the site i. Here, 〈i, j〉 identi-
fies summation over the nearest-neighbor sites.

3. Method

The functional integral representation of models for
correlated bosons allows us to implement efficiently the
method of treatment. The partition function is written
in the form

Z =
∫

[DāDa] e−S[ā,a] (2)

and the bosonic path integral is taken over the complex
fields ai(τ) with the action S given by

S[ā, a] =
∑

i

∫ β

0

dτ

[
āi(τ)

∂

∂τ
ai(τ) +H(τ)

]
, (3)

where β = 1/kBT and T is the temperature. Since
Hamiltonian is not quadratic in the fields ai we have to
decouple first the interaction term in Eq. (1) by means of
a Gaussian integration over the auxiliary scalar potential
fields Vi(τ) whose periodic part V P

i (τ) couples to the lo-
cal particle number through the Josephson-like relation
φ̇i(τ) = V P

i (τ) where φ̇i(τ) ≡ ∂φi(τ)/∂τ . Next, we per-
form the local gauge transformation to the new bosonic
variables

ai(τ) = bi(τ) exp [iφi(τ)] . (4)
Using such a description is justified by the definition of
the order parameter

ΨB ≡ 〈ai(τ)〉 = 〈bi(τ) exp (iφi(τ))〉 = b0ψB, (5)
whose non-vanishing value signals a macroscopic quan-
tum phase coherence (in our case we identify it as su-
perfluid SF state, see Fig. 1). In the large U limit the
amplitude b0 ≡ 〈bi〉 has a nonzero value, but to achieve
the superfluidity, the phase variables must also become
stiff and, in consequence, ψB ≡ exp (iφi(τ)) 6= 0. Inte-
grating the action in Eq. (3) over the bosonic fields we
obtain the effective Lagrangian in terms of the phase-
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Fig. 1. Superfluid order parameter ψB for sev-
eral values of relative temperature kBT/U =
0.00, 0.05, 0.10, 0.20 from the left to the right and fixed
chemical potential. Dashed-dotted line is the amplitude
b0 of the order parameter.

only variables
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with the phase stiffnesses Jij = b2
0tij , and the amplitude

b2
0 =

(∑
〈i,j〉 tij + µ̄

)
/U .

4. Results

To proceed, we replace the phase degrees of freedom
by the complex field ψi which satisfies the quantum pe-
riodic boundary condition ψi(β) = ψi(0). This can be
conveniently done using the Fadeev–Popov method with
the Dirac delta functional representation [4]. Within the
phase coherent state the superfluid state order parameter
becomes

1− ψ2
B =
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In the above equation Λ2
k = (J0 − Jk) /U + υ2(µ/U) and

υ(µ/U) = frac(µ/U)−1/2, where frac(x) = x− [x] is the
fractional part of the number and [x] is the floor function
which gives the greatest integer less than or equal to x.
The finite-temperature phase diagram of the model can
be calculated from Eq. (7) by introducing the density of
states for simple cubic lattice in order to perform the sum
over the lattice wave vectors
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with a1 = min(−1,−2 − ξ/t) and a2 = max(1, 2 − ξ/t);
K(x) is the elliptic function of the first kind [5].

Fig. 2. Phase diagram for BH model for a sim-
ple cubic lattice as a function of chemical potential
and several values of relative temperature kBT/U =
0.00, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06 (different gray re-
gions from bottom). The Mott insulator phase is found
within each lobe of integer boson density. Above the
critical lines the superfluid region takes place.

Fig. 3. Bosonic occupation number nB as a function
of the chemical potential, for several values of relative
temperature and for t/U = 0 (the atomic limit).

A lobe-like structure (see Fig. 2), similar to the zero-
-temperature case, becomes flat with increasing temper-
ature. The lobes with a larger boson occupation number
are more stable against temperature. The stability comes
from higher values of the repulsive energy U . Therefore,
at temperature T = 0 the interaction in the system [6]
governs the quantum phase transition. Decreasing value
of the repulsive energy we can achieve superfluid phase.
With increasing temperature, typical of the Mott state,
steps-like profile becomes smoother (see Figs. 3 and 4).
Therefore, bosons placed in the Mott state get energy
required to move from one lattice site to another from
thermal fluctuations. The temperature kBT/U ≈ 0.2,
where the occupation number characteristic becomes flat,
is similarly recognized as a melting temperature for the
condensate slowly loaded into the optical potential in the
presence of a smoothly varying trap [7].
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Fig. 4. Density plot of the compressibility κ = ∂nB/∂µ
as a function of the temperature for t/U = 0. Shading
around the integer values µ/U corresponds to high val-
ues of κ whereas the gray shading marks the region of
diminishing compressibility.

5. Summary

In this paper we have presented a study of the finite-
-temperature transition in the three-dimensional Bose–
Hubbard model. We employed the U(1) quantum rotor
approach and a path integral formulation with inclusion
of summation over topological charge, explicitly tailored
for the BH Hamiltonian. This method can give the ther-
modynamics of the Bose–Hubbard model in the limit of
strong interactions. Our aim was then to analyze the
phase transitions that may occur in such system at finite
temperature, as well as to determine the general features
of the phase diagrams. We demonstrated the evolution
of zero temperature Mott lobes and Mott plateaus when
the temperature is increasing.
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