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The main purpose of this paper is to promote the use of interval calculus in physics. As an example we
use the system consisting of two thin films, one ferromagnetic and another one antiferromagnetic, deposited
one atop of the other. We successfully and accurately simulate the positions of resonance fields of such
a system, as seen in ferromagnetic resonance experiment. Interval calculations have revealed the presence of
1, 2 and sometimes even 4 distinct equilibrium configurations of the system, all corresponding to the same
resonance field, when the field has a component antiparallel to that of cooling field, while only 1 such position
when it points in the opposite direction. In both cases only a single resonance line is observed. As an added
value we show that the exchange-biased system is in the metastable state, out of true thermodynamical equilibrium.

PACS numbers: 02.70.−c, 73.21.Ac, 75.30.Et, 75.70.−i, 76.50.+g

1. Resonance conditions

We use the model for ferromagnetic/antiferromagnetic
(FM/AF) bilayers introduced by Hu et al. [1]. The rel-
evant part (we neglect the Zeeman energy of the AF
component) of the free energy per unit area of a ferro-
/antiferromagnetic bilayer can be written as

E =
[
2π (MFM · n)2 − γH ·MFM −K in (mF · u)2

−Kout (mF · n)2
]
t− σ (mA · u)

−J1 (mF ·mA) + J2 (mF ·mA)2 , (1)
where mF = MFM/ |MFM|, mA = MAF/ |MAF|,
n = (0, 0, 1) is the direction perpendicular to the sample
plane, u = (1, 0, 0) is the direction of the magnetic field
during cooling (an easy, in-plane direction for FM layer
magnetization, MFM), K in and Kout are respective uni-
axial anisotropy constants for FM component, σ is the
domain wall energy density in the AF layer, J1 and J2

are the bilinear and biquadratic exchange constants at
the interface, respectively. γ is the gyromagnetic ratio
and t is thickness of a ferromagnetic part.

In spherical coordinates the ferromagnetic resonance
(FMR) condition is
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where the angles θ and ϕ describe the orientation of mag-
netization of the FM layer (MFM) at resonance and all
the derivatives have to be evaluated at the equilibrium
position(s) of the entire system, that is of both vectors:

MFM and MAF. ω is the fixed frequency of the mi-
crowave radiation, here 9.248 GHz. Our measurements
were performed with external field located in the plane
perpendicular to the sample plane but containing the in-
-plane easy axis. Other details concerning sample prepa-
ration, experiment and values of all obtained relevant
parameters were already published in [2] and [3]. The
nature of exchange bias effect is still poorly understood
[4, 5] and the goal of our investigation was to shed some
light on this phenomenon.

2. Classical simulations of the FMR spectra

To calculate the resonance field for a given orientation
of an external field, one has to follow a rather tedious
procedure. For each magnitude of the external field an
equilibrium position(s) of the system has (have) to be
found first. This step alone is a challenging task, requir-
ing to solve a system of 4 highly non-linear equations,
∇E = 0, and determining which solutions correspond to
the free energy minima. Then, using Eq. (2), the reso-
nance frequency (frequencies) is (are) determined. The
field(s), at which so found resonance frequency is equal
to the one used in experiment, is (are) the sought reso-
nance field(s). It is not possible to simplify this procedure
since the equilibrium position of the entire system usu-
ally differs, sometimes drastically, from the orientation
of an external field and is sensitive to its magnitude; see
Fig. 1. This is why the equilibrium position cannot be
reliably and accurately guessed, except for rare special
cases (highly symmetric ones). Needless to say that this
procedure has to be repeated anew for each orientation
of the external field.
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Fig. 1. The equilibrium positions at resonance for FM
(squares) and AF component (diamonds) versus orien-
tation of the external field, both given as polar angles.
The field rotates in the plane perpendicular to the bi-
layer and containing the in-plane easy axis. Negative
values mark the direction opposite to that of cooling
field. The apparent “noise”, in the left part of the fig-
ure, is not the result of numerical inaccuracies, it shows
the presence of multiple equilibria, all corresponding to
the same magnitude of the resonance field. Only the po-
lar angle is shown, since azimuthal one differs no more
than 1◦ in the whole range.

3. Interval calculus

The essence of interval calculus is to evaluate the
ranges of arithmetic expressions given the ranges of their
individual constituents. Interval calculations deliver the
so-called guaranteed results, i.e. intervals certainly con-
taining the true result, even when the computations are
performed with finite precision (!). One should keep in
mind, however, that such results are quite often too wide.
The overestimation is never known precisely, but it van-
ishes as the width(s) of argument(s) for continuous func-
tions decrease to zero. The multidimensional intervals,
being the Cartesian products of ordinary intervals, are
commonly called boxes. It has to be stressed that exist-
ing numerical algorithms only rarely can be easily con-
verted into interval form. This is because we operate on
sets rather than on ordinary numbers and some familiar
computer instructions may lose their sense: think of the
conditional statements like if x > y then . . .

Consequently, we have to get used to think in terms
of boxes. More thorough introduction and some software
tools can be found in [6].

4. FMR spectra simulated with interval methods

The following procedure is repeated for every partic-
ular orientation of an external field. We start with a
list of 5-dimensional boxes, initially containing only one
element, namely a box being the Cartesian product of
the appropriate ranges for: (a) external field magnitude,
[0, µ0Hmax = 2 T], (b) two angles determining the orien-
tation of FM layer magnetization (θ, ϕ) = [0, π]× [0, 2π],

and (c) the same for AF layer. Such a box expresses our
complete ignorance concerning the possible equilibrium
position(s) of magnetization components at resonance(s)
(full sphere for each component) as well as the magnitude
of the resonance field (we set the field range to the one
available in our spectrometer). The box is then subjected
to the series of tests in order to determine whether or not
the resonance conditions can be met somewhere in its
interior. We test: whether all the components of a gra-
dient of free energy density change sign in it, whether
the free energy density is a locally convex function of its
angular variables (we need to evaluate all second partial
derivatives for that), and whether the range of resonance
frequencies matches the one used during experiment.

Failing at least one of those tests eliminates the box
immediately from further considerations (that is no fur-
ther tests are attempted). The box successfully passing
all the tests is bisected (halved, perpendicularly to its
longest edge), the two offspring boxes are put at the end
of list, and the process is repeated with the next avail-
able box. We finish when either the list is empty (no
resonance found nor is possible) or contains only “small”
boxes, i.e. having every edge shorter than the prescribed
accuracy, which is in our case equal to 0.005 mT for mag-
netic field and 0.01◦ = 1.7 × 10−4 rad for all angles —
well below experimental uncertainties. Due to the pos-
sible overestimations, the final list sometimes contains
many small boxes, too many to be listed. Therefore the
routine tries to “glue” them back, if they are adjacent.
Effectively we finish with 1, 2 or 4 disjoint boxes in most
cases. Returned are their centers and lengths of their
edges, sometimes higher than intended. This way all the
resonance fields are precisely determined together with
the equilibrium positions of magnetization for both sub-
systems.

The routine is called repeatedly for subsequent ori-
entations thus producing complete angular FMR spec-
trum. Processing the single orientation usually requires
less than 10 s on a 1.5 GHz PC. During computations
the length of list of unprocessed boxes oscillates wildly,
rarely exceeding 400. For some “difficult” orientations,
the computing time increases occasionally 20 times or
even more and so does the instantaneous length of list.

The procedure described above, based on repeated
chopping of the domain of interest into smaller parts and
discarding those certainly not containing the solution(s),
is typical of many interval-oriented algorithms.

5. Conclusions

We have demonstrated that the interval approach is
an effective and efficient tool for precise calculation of all
the resonance fields regardless of the sample orientation.
This is impossible on the analytical way. Using those
methods we are able to make use of all the experimental
measurements, not only of those performed in specific
directions, to estimate the values of important physical
parameters like exchange couplings or various anisotropy
constants.
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Fig. 2. The free energy of equilibrium position at res-
onance versus orientation of the external field. The
dimensionless energy is rescaled as (Eeq − Emin)/
(Emax − Emin), where (Emin, Emax) denotes the range
of free energy density for a given orientation of the res-
onance field.

As a side effect, our computations revealed that FMR
in exchange coupled FM/AF bilayer occurs at local
rather than at global free energy minimum, see Fig. 2. In
the dimensionless units used there the global minimum

corresponds to zero, while the resonance occurs mostly
near the average height of the free energy landscape, ex-
cept when the field is perpendicular to the sample plane.
This indicates unambiguously that exchange-biased state
is metastable, and beyond any doubt not the ground state
— in full accordance with other experimental observa-
tions (“trained” hysteresis loops).
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