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We define a specific class of fractals as “net fractals” and prove that in the logarithmic scale they are isomor-
phic with some bulk crystals. Furthermore, with the use of logarithmic coordinates, we prove that in the “net
fractal” magnetic system the indirect exchange, by itinerant electrons can be presented in the form that is reminis-
cent of the Ruderman–Kittel–Kasuya–Yosida interaction characteristic of a system of fractional spectral dimension.
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1. Introduction

Indirect magnetic interaction between spins arises due
to the scattering of the electrons on the magnetic mo-
ments of the impurity ions. The conventional Ruderman–
Kittel–Kasuya–Yosida (RKKY) model of indirect cou-
pling is valid provided that electron density is uniform
and the dopant ions are distributed randomly within a
matrix. However, in many cases the dopant ions show
tendency towards clustering. These spontaneously pat-
terned structures can be assembled in various geometries.
The resulting clusters immersed within the matrix often
show fractal symmetry. That is why different concepts
which account for the mutual interplay of underlying
topology and magnetic interactions are still under debate
[1–5]. Evidently such a relation can be studied numer-
ically, however, numerical calculations do not provide a
simple understanding of the parameters that control the
process. That is why even simplified analytical models
are still attractive. We limit our study to “net fractals”,
a class of fractals, for which we show that after transition
to logarithmic coordinates, the translation symmetry in
the mass distribution is restored. It opens a possibility
to describe the symmetries of some magnetic self-similar
fractals in the way that is reminiscent of conventional
RKKY formalism developed for crystalline systems.

2. Model

We say that K ∈ R3 satisfies the scaling law S or
is infinite-size self-similar fractal if S : K = K. Let
us limit our considerations to fractals in which the self-
-similarity can be realized only via linear maps, i.e. by
transformations which point r = (x1, x2, x3) ∈ K ⊂ R3

transform into the point r′ = (x′1, x
′
2, x

′
3) according to

the formula x′i = Si1x1 +Si2x2 +Si3x3, where i = 1, 2, 3.
This transformation is represented by matrix S. If we

orient coordinate axes along the eigenvectors of matrix
S (i.e., r = (x1, x2, x3) → (ξ1, ξ2, ξ3)) the transfor-
mation takes the form of S = S1S2S3. Each Si rep-
resents a multiplier along the coordinate axis ξi. Let
us consider more general transformations of the type
Sm,n,l = (S1)n ◦ (S2)m ◦ (S3)l, where (Si)n denotes
n-tuple superposition of transformation Si, and define
a class of infinite “net fractals” Gnf , for which the re-
lation Sm,n,l : Gnf = Gnf is valid. It can be proven
[6] that, when presented in a logarithmic scale, the fam-
ily of mappings S(m,n,l) is isomorphic with a 3D crystal
lattice. The isomorphic mapping is given by S(m,n,l) →
(ma1, na2, la3). The very same refers to the placement
of the characteristic building blocks of the “net fractal”.
This means that after transition to the logarithmic co-
ordinates uniform distribution of spins and of electron
density is restored [6].

Let us consider a “net fractal” cluster consisting of N
localized magnetic moments. Let us discuss the indirect
interactions between magnetic moments provided that
some electrons in the fractal systems delocalize. As any
indirect magnetic interaction is a collective phenomenon
we should prove that typical fractals are large enough to
establish indirect coupling between magnetic moments.
Fortunately, the answer is easy as we know that in the
oxide system electrons delocalized on two magnetic ions
suffice to form “double exchange” coupling. Moreover,
even in bulk systems the effective range of the RKKY
coupling never exceeds a few lattice spacings. There-
fore we can conclude that typical real fractals are large
enough to allow manifestation of the RKKY-like indirect
magnetic coupling.

It is natural to assume that the self-similarity of the
fractal is reflected also in the symmetry of exchange in-
teractions. Let us now recall the (log-scale) isomorphism
of “net fractals” and some crystal lattices. With these

(329)



330 R. Jaroszewicz

assumptions the magnetic “net fractal” is mapped onto
a crystalline-like spin lattice. We should remember here
that in a fractal the electron mobility is restricted to the
directions allowed by the internal geometry. This means
that we have mapped the magnetic fractal onto a crystal
lattice, in which the spins form a percolation cluster sep-
arated from the surrounding by the “red bonds”. The
percolation of the (log-scale) lattice sets restriction on
the electron mobility. To account for existence of “red
bonds” we are using the fact that the structure of the
equation of particle motion on the percolating network
has the form of diffusion equation (or the linearized equa-
tion of motion for ferromagnetic spins) [7]. The diffusion
on the fractal system as a rule involves the possibility of
fractional dynamics [8]. The effective Hamiltonian which
involves using fractional order derivatives [8] predicts un-
conventional (nonparabolic) dispersion relation. This in
turn causes the value of spectral dimension ds that scales
the formula for electron density of states n(ε):

n(ε)dε ≈ (ε− ε0)ds/2−1dε (1)
to become a fraction [9]. The most interesting fact is
that in the case of low-dimensional systems the spectral
dimension ds as a rule differs from the geometrical (topo-
logical) dimension. Therefore, when mentioning the di-
mensionality of the system, we should say which notion
of dimension we are speaking about.

For the use of further considerations we should point to
the reader that indirect magnetic interactions are trans-
mitted via low-energy excitations of the free electrons (or
holes). In view of the above it is evident that the indirect
magnetic interactions are governed by the values of the
effective spectral dimension [4]. With the use of formula
(1) the analytical expression for the RKKY exchange in-
tegral in the case of arbitrary spectral dimension αD can
be found [4]:

J(ξ) = J0ξ
α−2[Jα/2−1(κξ) Yα/2−1(κξ)

+Jα/2(κξ) Yα/2(κξ)], (2)
where Jα(x) and Yα(x) are the Bessel and Neumann func-
tions, respectively.

Therefore, we can conclude that the “net fractal” sys-
tem pictured in the logarithmic coordinates exhibits the
RKKY-reminiscent features [4]. The exchange integrals
show conventional sign reversal oscillatory behavior. The
leading term in the exchange integrals J(ξ) decays with
the interspin separation ξ (measured in the log scale) as
J(ξ) ∝ ξ−α. This means that the envelope of the J(ξ) is
governed by the spectral dimension α.

Another problem that should be discussed is the pos-
sibility of magnetic ordering on a fractal substrate. As
we know the topological (geometrical) dimension of the
dendritic fractals as the rule is lower than two. Ther-
modynamics predicts no collective ordering at T > 0 in
a system having dimension D < 2. On the other hand,
experiments show that ferromagnetic ordering exists in
some fractal systems. For example the phase separation
in the doped Pr1−xCaxMnO3 systems results in the for-

mation of the ferromagnetic, charge delocalized regions
at the nanometer level with the fractal symmetry [10].
To explain this contradiction, let us discuss the way in
which the dimensionality enters into thermodynamical
formulae.

To any physical systems various definitions of dimen-
sion can be proposed. In a description of collective behav-
ior of many-particle system we shall be interested in geo-
metrical dimension, i.e. dimension of the Euclidean space
embedding a particle and/or spectral (dynamical) dimen-
sion, which is related to the collective excitations of the
system. The spectral dimension ds is defined via the den-
sity of states through the formula (1), where the spectral
dimension ds can take any real (i.e. also fractional) value.
Let us prove that in the case of non-translation-invariant
structures spectral dimension is the best generalization of
the Euclidean dimension of the system when dealing with
dynamical or thermodynamical properties. To show it,
let us consider how the dimensionality enters the thermo-
dynamical quantities. For an ideal Fermi/Bose gas the
grand potential reads [11]

lnΞ =
∫ ∞

0

n(ε) ln
(
1± e−βε

)
dε. (3)

From Eq. (3) one can easily see that all the informa-
tion about the dimensionality of the actual system en-
ters thermodynamical formulae via the density of states
n(ε). Thus, as we can see from the definition of n(ε) the
thermodynamical evolution of any system depends on its
spectral dimension. It is well known that low-dimensional
systems (e.g. so-called quasi-2-dimensional ones or frac-
tals) can exhibit the spectral dimensions ds > 3 [11]. As
we can have ds > 3 we could expect that at least for some
fractals there can exist collective phenomena e.g., ferro-
magnetism at T > 0 even if the topological dimension D
is smaller than two. Formula (2) refers to the T = 0 case.
At finite temperature, acoustic fractons interact with the
electron sea smearing out the spin polarization pattern,
consequently the interaction is cut off at a length ΛT.

3. Discussion and summary

The results obtained so far refer to the “net frac-
tals”, which are ideal generalizations of some real fractals.
Most real fractals consist of a backbone and side branches
(dead ends) attached to it. Thus the real fractals differ
from the discussed above “net fractals” as they show the
log-periodicity at most only along the backbone. Nev-
ertheless, the dendritic fractal should display discussed
mechanism and should be active when interaction along
the backbone is considered. We believe that our study
through the derivation of analytical results can be of con-
siderable help for experimentalists when rapid and accu-
rate estimates of magnetic exchange integrals are needed.
Finally, we hope that our results can be helpful in tailor-
ing properties of spintronic devices.

In conclusion, we believe that our results not only
point the way to a new understanding of magnetism of
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fractally structured systems but also give practical indi-
cations for engineering of fractally structured electronic
devices. Even if the considered model does not fit ex-
actly the most of real fractals it is still useful as it gives
a deeper insight into the dynamical evolution of fractal
systems.
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