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The conductance of an Aharonov–Bohm interferometer is studied in a tight-binding model of graphene. Two
point contacts with zigzag edges, which function as valley filters, are connected by a ring with an irregular bound-
ary. We find that the narrowest rings show strong current suppression and nearly sinusoidal magnetoconductance
oscillations, whereas for wide rings higher harmonics are equally represented. In the intermediate width range,
oscillations with a basic periodicity are suppressed when two valley filters have opposite polarity, while higher
harmonics are unaffected. The effect is interpreted in terms of a relatively weak intervalley scattering in the system.
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1. Introduction

The discovery of graphene [1] has led physicists to
reexamine classic effects from mesoscopic physics [2],
mainly in search are novel features that arise from the
unusual conical band structure of a carbon monolayer.
However, the Aharonov–Bohm effect [3, 4] has received so
far little attention. Preliminary experiments have been
reported [5], the energy spectrum of a closed graphene
ring was also studied theoretically as a function of the
enclosed magnetic flux Φ by Recher et al. [6]. Here we
study the electron transport through an open graphene
ring, contacted to reservoirs by ballistic point contacts.
Our work builds on an earlier finding [7] that a single-
mode point contact with zigzag edges operates as a valley
filter. Depending on whether the Fermi level in the point
contact lies in the conduction or valence band, the trans-
mitted electrons occupy states in one or the other valley
of the band structure.

We find that in a few-mode graphene rings the conduc-
tance is strongly suppressed for any polarity of the valley
filters with small, nearly sinusoidal magnetoconductance
oscillations, which show the expected ∆Φ = h/e period-
icity. Instead, in a multimode ring the conductance oscil-
lates between 0 and the maximal quantum value 2e2/h
(limited by valley-filtering point contacts) with higher
harmonics equally represented in a Fourier spectrum. In
the intermediate range, however, the lowest harmonic
dominates the spectrum only if the two filters have the
same polarity. For opposite polarity a period doubling
appears: The lowest harmonic is suppressed while the
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second and higher harmonics are unaffected or enhanced.
We attribute the period doubling to a relatively long in-
tervalley scattering time, which causes that the electron
have to travel more than once along the ring to flip the
valley pseudospin.

2. Aharonov–Bohm interferometer in graphene

The analysis starts from the tight-binding model of
graphene, with Hamiltonian

H =
∑

i,j

τij |i〉〈j|+
∑

i

Vi|i〉〈i|. (1)

The system is coupled to the vector potential A through
the hopping matrix element

τij = −τ exp

(
2πi
Φ0

∫ Rj

Ri

dr ·A
)

, (2)

with τ = 2.7 eV the hopping energy and Φ0 = h/e the
flux quantum. The orbitals |i〉 and |j〉 are nearest neigh-
bors on a honeycomb lattice (with lattice points Ri), oth-
erwise τij = 0. The energy-independent Fermi velocity
vF near the Dirac point equals vF = 1

2

√
3τa/~ ≈ 106 m/s,

with the lattice constant a = 0.246 nm. The electrostatic
potential Vi = V (xi) varies only along the axis connect-
ing the input and output point contacts (see Fig. 1).
Namely, the potential equals U at the first constriction
(0 < x < l, where l is the constriction length), U ′ at
the second constriction (l + LC < x < 2l + LC, with
LC =

√
4R2 − w2, where R is the ring radius and w is the

constriction width), and zero everywhere else. By vary-
ing U and U ′ at a fixed Fermi energy µ∞ in the external
leads, we can vary the Fermi energies µ = µ∞ − U and

(322)
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µ′ = µ∞−U ′ in the two constrictions. We took µ∞ = τ/3
to work with heavily doped graphene leads, while remain-
ing at sufficiently small Fermi energy that the linearity of
the dispersion relation holds reasonably well. The con-
striction parameters w = 10

√
3a and l = 16a are chosen

to provide valley polarizations above 90% [7].

Fig. 1. Graphene ring with an approximately circu-
lar boundary attached to graphene leads (middle part)
and corresponding potential profile (above). Constric-
tions with zigzag edges between leads and the ring
allows one to control input and output valley po-
larizations by varying the electrostatic potentials U
and U ′. A magnified section (bottom part) of the ring

with R = 35
√

3a and W = 10
√

3a used in our simula-
tions, which shows the irregularity of the boundary.

We denote the number of transmitted modes through
the first constriction by n and through the second con-
striction by n′. A positive number indicates that the
Fermi level lies in the conduction band, while a nega-
tive number indicates that the Fermi level lies in the va-
lence band. For example, as shown in Ref. [7], the case
−3∆/2 < µ′ < 0 < µ < 3∆/2 (with ∆ = π~v/w) cor-
responds to n = 1, n′ = −1 (valley filters of opposite
polarity), while the case 0 < µ, µ′ < 3∆/2 corresponds
to n = n′ = 1 (valley filters of the same polarity). The
interferometer is modeled by a ring with an irregular,
approximately circular boundary, constructed by keep-
ing only the lattice sites within an annulus formed by
two concentric circles. Because the boundaries are not
uniform, the number of modes that can propagate along
the ring is not well defined. We label the data by the
number of modes N in zigzag-edge nanoribbon of width
W , short sections of which are still present in the ring.
To vary N , we keep the radius fixed at R = 35

√
3a and

vary the inner radius. Ring widths W/
√

3a = 5 ÷ 20
correspond to N = 1÷ 7.

We take the vector potential A = (Ax, 0, 0) with

Ax =

{
By, −W∞−w√

3
< x < 2l+LC+ W∞−w√

3
,

0, otherwise.
(3)

This corresponds to a uniform perpendicular magnetic
field B in the area containing the ring, the two point con-
tacts, and the widening region connecting the point con-
tacts to the external leads (see gray rectangle in Fig. 1,
top part). For technical reasons, the magnetic field is set
to zero in the external leads. We calculate the transmis-
sion matrix numerically and then obtain the conductance
from the Landauer formula [2].

3. Results and discussion

3.1. Preliminary: a zero-field conductance

To analyze the operation of the valley filters attached
to a ring with an irregular boundary, we first show in
Fig. 2 the conductance in zero magnetic field. We take
µ = 0.05τ to keep n = 1 at the first constriction (the
polarizer), and vary the Fermi energy µ′ at the second
constriction (the analyzer). For positive µ′ (n′ = 1),
when the two constrictions transmit the same valley po-
larization, the narrowest rings show a strong conduc-
tance suppression, with G . 10−5e2/h for N = 1, and
G . 10−2e2/h for N = 3. For negative µ′ (n′ = −1) the
conductance additionally drops by two orders of magni-
tude, showing that the valve effect of Ref. [7] extends to
the situation when transport is fully carried by evanes-
cent modes. In wider rings (N = 5 and 7) we observe
an appreciable current through the system. The conduc-
tance for N = 5 is still one order of magnitude below the
optimal value 2e2/h, and the valve effect remains visible.
For N = 7 the conductance spectrum is dominated by
discrete resonance states, and the valve effect vanishes.
(Let us notice that the resonances for µ′ . −3∆/2 are
present in all spectra due to quasi-bound states [8] in the
valence band of the second constriction.)

The anomalously small conductance for N = 1 can
be attributed to mismatched valley polarization in sub-
sequent sections of the ring arm, whose crystallographic
orientation is close to zigzag lines rotated by π/3 [9]. It
is also consistent with recent theoretical findings on the
generic boundary condition of a terminated honeycomb
lattice by Akhmerov and Beenakker [10]. It is shown
that the zigzag boundary condition applies for any angle
φ 6= 0 (mod π/3) of the boundary (where φ = 0 la-
bels the armchair orientation). The strong current sup-
pression for N = 3, however, cannot be explained by
existing numerical and analytical studies of ballistic sys-
tems. (Let us notice that we intentionally leave some
dangling bonds on our ring edges to go beyond the the-
ory of Ref. [10] limited to minimal edges.) Instead, it
is consistent with experimental work of Ref. [5], showing
even the mesoscopic ring of 0.7 µm diameter (in compar-
ison with 2R = 70

√
3a ≈ 30nm in this study) needs to
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Fig. 2. Conductance of the graphene ring of Fig. 1 in
zero magnetic field at fixed µ = 0.05τ ≈ ∆/3 as a func-
tion of µ′/∆. The parameter µ′ = µ∞ − U ′ is varied
by varying U ′ at fixed µ∞. (top) The data for N = 1
(solid line) and 3 (dashed line) on a logarithmic scale.
(bottom) The data for N = 5 (solid line with shadowed
area) and 7 (dashed line).

be heavily doped to open transmission channels and, in
turn, show an appreciable conductance.

3.2. Magnetoconductance analysis

In Fig. 3 the conductance G is plotted as a function of
the flux Φ = BS̄ through the ring, where S̄ = (So+Si)/2
is the average of the outer and inner ring areas So and Si.
The first harmonic frequency of the Fourier spectrum
shown in Fig. 4 is within a few percent of the expected
value Φ−1

0 = e/h, indicating that S̄ accurately represents
the effective area of the ring. The harmonic content of
the magnetoconductance oscillations is strikingly differ-
ent when the current is strongly suppressed (N = 1 and
3, top two parts in Fig. 3) and when it is not suppressed
(N = 5, 7, lower two parts). On the one hand, when the
conductance is suppressed below 10−2e2/h the magne-
toconductance oscillations are nearly sinusoidal, almost
without higher harmonics. This is as expected for trans-
mission through evanescent modes. On the other hand,
when the conductance is of order e2/h the oscillations are
highly nonsinusoidal, with appreciable higher harmonics,
as expected for transmission through propagating modes.

An interesting feature of the nonsinusoidal magneto-
conductance oscillations shown in Fig. 3, and quantified
by the Fourier transform in Fig. 4, is the suppression
of the lowest harmonic (period ∆Φ = Φ0) in the case
of opposite valley polarizations in the two constrictions
(n = −n′ = 1). This suppression of the fundamen-
tal periodicity is visible for an intermediate ring width
W = 15

√
3a corresponding to N = 5 (third part from

top in Fig. 3 and top in Fig. 4), and vanishes for N = 7

Fig. 3. Conductance as a function of magnetic flux
through the ring. Solid curves show the case n = n′ = 1,
µ = µ′ = 0.05τ of identical valley polarizations in
both constrictions, and dashed curves show the case
n = −n′ = 1, µ = −µ′ = 0.05τ of opposite polariza-
tions. The value of N is varied between the four parts.

(fourth part from top and bottom part, respectively).
The second (and higher) harmonics, in contrast, are un-
affected in the case of opposite valley polarizations. The
suppression of the first harmonic indicates that electrons
which travel only once along the ring have a small proba-
bility for intervalley scattering and therefore cannot con-
tribute to the conductance when the two constrictions
have opposite valley polarization. Higher harmonics cor-
respond to electrons which travel several times along the
ring, with a larger probability for intervalley scattering
and therefore a larger probability to contribute to the
conductance. In other words, for the ring of intermediate
width, typical intervalley scattering time is tvalley & tdwell

(with the semiclassical dwell time tdwell ∼ RW/(vFw))
whereas for the widest ring tvalley . tdwell. That sug-
gests (i) tvalley weakly depends on W when R is kept
constant, and (ii) it is relatively long, so the valley pseu-
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Fig. 4. Fourier transform of the magnetoconductance
data shown in Fig. 3 for N = 5 and 7.

dospin is flipped rather after few than just one incidence
with irregular ring edges.

4. Conclusions

In conclusion, we have identified signatures of valley
polarization in the magnetoconductance of an Aharonov–
Bohm interferometer in graphene. First, narrow rings
show nearly sinusoidal magnetoconductance oscillations
around a greatly suppressed average conductance, at-
tributed to a generic current suppression effect in a con-
striction consists of two (or more) sections with crystallo-
graphic orientation rotated by an angle close to π/3. Sec-
ond, the ring of an intermediate width shows suppression
of the lowest harmonic of the conductance oscillations
that appears when the two point contacts have opposite
valley polarity, which indicates that electrons which have

travelled only once along the ring preserve their valley
polarization, and therefore cannot contribute to the con-
ductance. The effect vanishes in a wide multimode ring,
for which the Fourier spectrum of magnetoconductance
oscillations shows that all harmonics are almost equally
represented, and insensitive to valley polarity of the point
contacts attached to the ring.
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