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In this paper, we create an analytical model to investigate the localized defect modes associated with a defect
cell inserted into a one-dimensional magnetic photonic crystal. The structure is a magnetic superlattice with
alternative layers of two different magnetic permeability containing a defect cell which is a layer of different nature
(material or/and size) from the other layers. This leads to appearance of several localized defect modes within
the magnetic photonic band gap. Our analytical approach is based on the transfer matrix and Green’s function
methods to calculate the frequency and number of the defect modes which can be controlled easily by varying
parameter values of the constituent layers of the magnetic photonic crystal. This method results in an analytical
formula for prediction of frequency of the defect modes for both TE and TM polarizations at arbitrary angle of
incidence.

PACS numbers: 75.70.Cn, 42.70.Qs, 84.30.Vn, 85.70.Sq

1. Introduction

Recently, interesting results of investigations of pho-
tonic periodic structures such as magnetic photonic
crystals (MPCs) have received attractive attention.
MPCs are artificial periodic structures comprising al-
ternating layers with different magnetic properties or
magnetic/non-magnetic materials [1]. In such structures,
there is a range of frequency spectrum where light (pho-
ton) propagation is prohibited which is nominated as
magnetic photonic band gaps (MPBGs). MPBG can be
obtained when both the dielectric permittivity (ε) and
the magnetic permeability (µ) vary in the MPCs [2]. No-
ticeably, the employments of magnetic materials in peri-
odic structures allow the tuning of MPBG due to the de-
pendence of their optical properties on an external mag-
netic field and temperature [3, 4].

By breaking the periodicity of structure or by intro-
ducing a disorder into the regular structure of a MPC,
allowed modes of electromagnetic waves can be created
inside the MPBG, called defect modes. So it is possible
to tune the defect modes to any frequency in the gaps
by designing the size and material of the defect layer.
The defect modes play important roles in the applica-
tion of MPCs to high efficiency isolators, waveguides and
filters, etc.
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However, the design of controllable defect modes in
MPCs requires predictive formulae for the frequency de-
pendence of the defect modes on physical parameters of
MPCs and on polarization and angle of incident light.
In this paper, the equation governing the frequencies of
the defect modes, perturbed by a defect cell, is derived
analytically for an infinite 1D MPC consisting of the pe-
riodically repeated bilayer cells. For this purpose, we use
the Bloch periodic condition and introduce a Green func-
tion to solve the equations obtained from transfer matrix
method (TMM). The frequencies and the number of lo-
calized defect modes depend upon the layers materials
and thicknesses. We have assumed that the dielectric
and magnetic absorptions of the layers are negligible and
ε and µ are to be constant and ignore any anisotropy in
ε and µ. Then we calculate the MPBG and defect mode
frequencies for both transverse electric (TE) and trans-
verse magnetic (TM) polarizations at various angles of
incidence.

2. Theoretical formalism

Let us consider an infinite 1D MPC, comprising
the periodically repeated thin layers of two types, i.e.
. . . ABABAB . . . The layered structure is periodic in the
z direction and homogeneous in the x–y plane. The lay-
ers are characterized by their thicknesses, dA and dB,
dielectric permittivities εA and εB, the magnetic perme-
abilities µA and µB, respectively, and Λ = dA + dB is the
length of periodicity of the MPC. A defect is modeled as
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a double layer situated at the center of the MPC. The
defect layers are characterized by their thickness dX and
dY , dielectric permittivities εX and εY , and magnetic
permeabilities µX and µY . Here we consider that ε has
equal value for all layers.

Let a plane wave be injected into the MPC at an in-
cident angle of θA with +z direction. In this case, the
electric field can be written as

E(r) = c+
J eikJ ·r + c−J e−ikJ ·r, (1)

in which the magnitude of wave vector, kJ = kJ sin θJ x̂+
kJ cos θJ ẑ, for a wave with a frequency of ω propagating
in the J-th layer (i.e. J = A,B, X and Y ) with a re-
fractive index of nJ =

√
εµJ , is kJ = nJω

c where c is the
speed of light in vacuum. In Eq. (1), r is the position
vector and c+

J (c−J ) is the amplitude vector of the inci-
dent (reflected) electric field in the J-th layer. Using the
Maxwell equations and Eq. (1) a similar equation for the
magnetic field can be derived. For the TE (TM) wave,
the electric field E (the magnetic field H) is in the y
direction. At the interface of adjacent layers, E and H
should be continuous. It has been derived that E and H
between the (I + 1)-th and I-th unit cells are related by
the transfer matrix TN for a normal cell (I 6= 0) and TD

for the defective cell (I = 0). The transfer matrix for a
normal cell is given by [5]:

TN =

(
λN σN

ξN ηN

)
, (2)

in which
λN = cos αA cos αB − pB

pA
sin αA sin αB,

σN =
i

pB
cos αA sin αB +

i
pA

cosαB sin αA,

ξN = ipB cosαA sin αB + ipA cos αB sin αA,

ηN = cos αA cosαB − pA

pB
sin αA sinαB, (3)

where αA = 2π
Λ W

√
εµAdA cos θA, αB = 2π

Λ W
√

εµBdB ×
cos θB, W = ωΛ/2πc which is normalized frequency and
the angles θA and θB, determined by Snell’s law of re-
fraction, are the propagation angles for layers A and B.
For the TE polarization pA and pB are given by pA =

1
cµ0

√
ε

µA
cos θA and pB = 1

cµ0

√
ε

µB
cos θB and for the TM

polarization, they are given by pA = 1
cµ0

√
ε

µA

1
cos θA

and

pB = 1
cµ0

√
ε

µB

1
cos θB

where µ0 is the magnetic permeabil-

ity of vacuum. The transfer matrix TD related to the
defect cells can also be written similarly as

TD =

(
λD σD

ξD ηD

)
, (4)

where the matrix elements are defined as those intro-
duced for Eq. (2) in terms of parameters relevant to the
defect layers.

In a structure with an infinite number of layers, as-
sumption of translational symmetry aided by the Bloch
theorem together with the use of TMM, one can obtain a

transcendental equation determining the band structure,
namely [6]:

2 cos(κΛ) = λN + ηN ≡ FN(ω) . (5)
In this equation, κ is the Bloch wave number. The prob-
lem of finding defect mode frequencies within the spectral
band gaps is according to that considered by Tamura in
Ref. [7], but in the case of a phononic crystal. In this
order, by applying boundary conditions for electric and
magnetic fields of the electromagnetic waves at the inter-
face of MPC layers and implementing some mathemati-
cal procedures, a recursion relation for the electric field
at the surface of each unit cell can be obtained. It is
possible to write this relation as the sum of two terms;
one of them is merely related to the perfect MPC and
the other one is due to the existence of the defect. Sub-
sequently, considering an infinite perfect MPC and ap-
plying the Green function method, an analytical relation
for defect frequencies can be deduced. The defect mode
frequencies are given by solutions of equation,

g0FD − g1(λNηD + λDηN − σNξD − σDξN) = 0 , (6)
where FD = λD + ηD, and g0 and g1 are given by

g0 = ∓ 1√
F 2

N−4
and g1 = ∓ 1√

F 2
N−4

(
∓
√

F 2
N−4+FN

2

)
where

the minus (plus) sign is applied for FN > 2 (FN < −2).
Thus, each defect mode frequency locates only in the
MPBGs. Consequently, Eq. (6) determines the frequen-
cies and the number of the localized modes in each
MPBG for different parameter values of the MPC and
the defect bilayer.

3. Results and discussion

Let us consider an MPC whose parameters have been
selected according to Ref. [8]. The magnetic permeability
and the thickness of the two layers are as follows: µA = 1,
µB = 4, and dA = 0.8Λ, and dB = 0.2Λ. For all layers
ε is constant and has real value of 4. The defect layer is
considered with µX = 4 and dX = 0.4Λ.

Figure 1 shows normalized frequency as a function of
propagating angle θA. For normal incident, both TE and
TM modes are equivalent. The white areas represent
the propagation bands and the gray areas are the for-
bidden bands. At the first band structure, with increas-
ing oblique angle the gap width of TM mode increases,
whereas gap width of TE mode decreases up to the Brew-
ster angle (θBr) and then grows up again. The θBr which
is tan−1

(√
µB
µA

)
corresponds to the Brewster angle where

there is no reflection of TE waves and therefore there is
no band gap. Defect branches (defect modes) can be seen
in Fig. 1 within the band gaps as dashed lines. At the
gap closing points there is no defect mode.

Another interesting property is that the localized
defect modes appear only in the band gap, which
depends upon defect permeability, thickness and oblique
angle of incident waves. The effect of variation of these
parameters on the defect mode frequencies for normal
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Fig. 1. MPBG in terms of normalized frequency for
the incident angle θA.

Fig. 2. The defect mode frequency versus defect thick-
ness (a) and magnetic permeability (b).

incident is represented in Fig. 2. The white areas rep-
resent the forbidden bands and the cross-hatched areas
are the propagation bands. By increasing the defect
thickness or magnetic permeability, the frequencies of
the localized modes move from the higher propagation
band to the lower one. Moreover, manipulating these
parameters provides a range of values suitable for
designing multi-frequency filters. As indicated, the
number of branches of the defect modes in the second
band gap is more than their number in the first one.

4. Conclusion

The present paper demonstrated an analytical study
of the localized defect modes in the MPBG of a 1D
MPC for both TE and TM polarization at arbitrary an-
gle of incidence. By using the Green function method
to solve the equations obtained by TMM, the dispersion
curve of magnetic periodic structures has been calculated
in detail. By increasing the defect thickness or mag-
netic permeability, the frequencies of the localized modes
move from the higher propagation band to the lower one.
Then, the dependence of the frequencies of the localized
modes on the defect thickness and magnetic permeability
emerging in the MPBG was looked into in order to show
its multifunctional applications in MPCs.
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