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The problem of spin-dependent transport of electrons through a metallic nanostructure is considered. The
system consists of non-magnetic metal wire with two magnetic impurities and is connected to two ferromagnetic
leads. The differential conductance is calculated by using the transfer matrix method. The spin polarization of
the conductance is also obtained. It was found that this polarization is dependent on the spin configuration of
magnetic impurities. This dependence can be controlled by the applied bias voltage.
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1. Introduction

The spin-dependent transport phenomena in nano-
structures have attracted much attention in the field of
modern electronics with respect to the spin-polarized cur-
rent and tunneling phenomena [1, 2]. The control and
conservation of the spin-polarized current through the
nanodevices form fundamental challenge of spintronics.

In this contribution we consider the effect of spin
configuration of two magnetic impurities on the spin-
-polarized electron transport in a metallic nanosystem.
A small number of magnetic impurities allows us to ana-
lyze the spin-dependent electron transport in the ballistic
regime. Additionally, we assume that the linear size of
the one-dimensional nanosystem is much smaller than the
spin coherence length. We look for the changes in spin
polarization of conductance due to the presence of mag-
netic impurities. We present the calculations of the differ-
ential conductance and the spin polarization of conduc-
tance in such nanosystem assuming the spin-dependent
current for fixed positions of magnetic impurities and all
possible but also fixed configurations of their spins. The
apparent changes in the polarization were obtained for
some system configurations.

2. Theoretical model and method of calculations

The device consists of a non-magnetic metallic wire
between two ferromagnetic leads made of the same ma-
terial. The wire is doped with two magnetic impurities.
We assume that the direction of electron spin is fixed
by the injection process from the left ferromagnetic lead
into the metallic region. The interfaces between ferro-
magnetic leads and the non-magnetic metallic wire form
potential barriers which are caused by the band mismatch

between the ferromagnetic leads and the non-magnetic
metallic wire and their differences in lattice constants [3].
The Hamiltonian of such system has the form

H = −~
2

2
d
dx

(
1

m(x)
d
dx

)
+ U0(x) + Uσ

imp(x), (1)

where m(x) is the position-dependent effective mass of
conduction electron, the magnetic impurity potential
Uσ

imp(x) is given by the formula

Uσ
imp(x) = Uσ

k δ(x−Xk) + Uσ
l δ(x−Xl), (2)

where Xk and Xl are the positions of magnetic impuri-
ties. We assume Uσ

k(l) = J0Sz(Xk(l))sz(x), where J0 is
the coupling constant, Sz(Xk(l)) is the z-component of
impurity spin, and sz is the z-component of conduction
electron spin. The ordinary potential U0(x) has the form

U0(x) =





µL, x ≤ Xi,

UL, x ∈ (Xi, Xj ],
U, x ∈ (Xj , Xm],
UR, x ∈ (Xm, Xn],
µR, x > Xn,

(3)

where the distance Xn −Xi is equal to the length of the
nanosystem, UL and UR are the barrier heights of the in-
terfaces, and distances Xj−Xi and Xn−Xm correspond
to the interface thicknesses.

To investigate the tunneling of spin-polarized elec-
trons through the considered nanosystem we extract the
spin-dependent transmission coefficient T σ(E) from the
solution of the time-independent Schrödinger equation,
Hφ(x) = Eφ(x), for the Hamiltonian (1) using the
transfer matrix methods (cf. [4]). The knowledge of the
transmission coefficient allows us to calculate the spin-
dependent conductance. In the linear response theory the
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spin-dependent conductance is given by the formula [5]:

Gσ =
e2

h

∫ ∞

0

dE Tσ(E)
[
−∂fFD(E, V )

∂E

]
, (4)

where fFD(E, V ) = {1 + exp [(E − eV )/(kBT )]}−1 is the
Fermi–Dirac distribution function, and the external bias
V = (µL − µR)/e.

3. Results and discussion

We performed numerical calculations of the spin-
-polarized current using the typical material parameters
of Co/Cu/Co system at 4.2 K. We assumed that the fer-
romagnetic leads were polarized in parallel, the length of
wire was 40 nm and the wire was doped by two Mn2+

ions. The distance between them was 13 nm and the
value of Uσ

k(l) was 2.75 eV [6]. Figure 1 shows the con-
ductance of spin-up and spin-down conduction electrons
as a function of the applied voltage at 4.2 K. The peaks
in conductance correspond to the resonant states in the
nanosystem. When the energy of spin-polarized electrons
is close to the energy of resonant state, their tunneling is
observed. The energies of the resonant states are depen-
dent on the length of the nanosystem, thicknesses of the
interfaces and the spin configurations of magnetic impu-
rities. The different types of curves present the spin-up
conductance for the different spin configurations of the
magnetic impurities in the nanosystem.

Fig. 1. The spin-up (G↑) and spin-down (G↓) conduc-
tance for a nanosystem with two magnetic impurities at
T = 4.2 K. Double arrows represent the parallel (↑↑) and
antiparallel (↑↓) spin configurations of the magnetic im-
purities. The insets show details of the first two peaks.

The spin polarization of the conductance is defined by
the formula [7]:

P =
G↑p −G↓p
G↑p + G↓p

, (5)

where index p denotes parallel configuration of the mag-
netization of ferromagnetic leads.

The dependence of the spin polarization of the con-
ductance as a function of applied bias voltage for two
different spin configurations of the magnetic impurities is
shown in Fig. 2. The dotted line describes the behavior
of the conductance when the impurities are antiparallel.
The polarization of the conductance defined in Eq. (5) is
almost constant except of small deviations in the vicin-
ity of the peaks of conductance shown in Fig. 1. It can
be understood because the orientation of electron spins
in both currents (spin-up and spin-down) relative to the
spin system of impurities is almost identical. The de-
viations appear in the vicinity of resonances because of
small differences in the values of conductances for op-
posite spins of electrons at the assumed configuration of
impurities.

Fig. 2. Dependence of the spin polarization of the con-
ductance on the applied voltage. Arrows represent the
relative spin configurations of the magnetic impurities.

The solid line describes the case when spins of both
impurities are aligned in parallel. The situation of two
spin currents now is quite different: one of them meets
spins of impurities parallel to its own, the second one
— antiparallel. The energies of interaction apparently
differ in these cases and therefore the peaks of respective
conductances are shifted (insets in Fig. 1). This gives rise
to abrupt changes in the polarization near the positions
of resonances, as can be seen in Fig. 2. It means that we
could control the effective spin of the current by means
of a small change of the bias voltage.

4. Conclusions

In this paper we studied the the differential conduc-
tance of spin-polarized electrons through the metallic
nanowire with two magnetic impurities in the ballistic
regime. We have used the transfer matrix method and
the Landauer formalism. In the present calculation we
neglect the spin-flip processes and the spin correlation ef-
fects. The calculated conductance of spin-polarized elec-
trons has pronounced maxima for the values of the ap-
plied voltage which correspond to the energies of resonant
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electron states. The spin polarization of the conductance
has two different behaviors for two different orientations
of magnetic impurities. Both information can be impor-
tant for design process and fabrication of nanodevices.
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