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We deal with the electric current flowing through a short chain of paramagnetic ionic blocks, coupled to metal-
lic electrodes in the serial configuration. An original three-band Hubbard–Anderson Hamiltonian is diagonalised
at the level of the single ionic block. A minimal but sufficient set of the latter’s four hybridised eigenstates serves
as a basis for the determination of the time-ordered temperature-dependent matrix Green functions, in terms
of which all the current–voltage (I–V ) characteristics can be expressed provided the coupling to the electrodes
is weak. The separation of the opposite-spin contributions to the electric current and, consequently, the spin
current from the left to right electrode can result from the on-site Coulomb repulsion term of Hubbard–Anderson
Hamiltonian, with no spin polarisation at the electrodes, but with the Zeeman-like coupling of the centre to either
a molecular or an external magnetic field.
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1. Introduction

In a discussion of the proposed microscopic model of
spin and charge transport in semiconducting materials
with permanent magnetic moments, we concentrate on
two non-trivial aspects of the problem, which are, first,
a specific treatment of the on-site Coulomb repulsion in
the three-band Hubbard–Anderson (H–A) model and the
resulting separation of the opposite-spin contributions to
the electric current; and, second, the influence of molec-
ular and external magnetic fields on the energy spectrum
of a single ionic block. The method, employed through-
out this paper [1, 2], is designed for such systems, whose
natural building units are ionic clusters. This is true
about many semiconducting compounds with permanent
magnetic moments, but especially about the transition
metal oxides and/or manganites. The ionic blocks consist
of the central paramagnetic cations, such as transition or
rare-earth ions, surrounded by the oxygen anions. The
neighbouring blocks share one (or more) anion sites. For
instance, in yttrium–iron garnet (YIG), they are tetra-
hedrons with the central iron site, surrounded by four
oxygen ions, octahedrons in which the central iron sites
have six oxygen neighbours, and dodecahedrons with the
central yttrium ions, each one of which is with eight oxy-
gen ions at the corners. In manganites, the oxygen ions
are located at the corners of octahedrons with the cations
at their centres.

The main objective of this paper is to compute the
charge and spin currents through a minimal but suffi-
ciently long chain, which consists of three ionic blocks.
A point symmetry of the outer blocks is different from

that of the middle one [3, 4]. The outer blocks are cou-
pled to non-interacting metallic electrodes in a serial con-
figuration. As shown earlier, an extra charge, localised
temporarily at one of the outer blocks, can induce a
change of the exchange interaction between the spins of
the outer and middle clusters from the Anderson anti-
ferromagnetic to ferromagnetic [1]. This means that the
chain becomes actually asymmetric. The charge and spin
currents, from the left and the right electrodes, can be
defined, respectively, as IQ(S) = 1

2
(I(ms)±I(−ms)). By the

non-equilibrium Green function method [5], due to weak
coupling between the centre and the electrodes, one can
obtain a well-known Meir–Wingreen formula [6] for the
ms-current from the left electrode [5, 7]:

Ims = iq(2h)−1Tr
∫

dE ΓL,ms

× [
G<

L,ms
(E) + fL(E)

(
Gr

L,ms
(E)−Ga

L,ms
(E)

)]
.(1)

Gr
L,ms

(E), Ga
L,ms

(E) and G<
L,ms

(E) are the matrix re-
tarded, advanced and lesser Green functions, respec-
tively, which are constructed from the fermion operators,
defined in a basis of the hybridised eigenstates of the first
ionic block, coupled to the left electrode. ΓL,ms is the
matrix line-width function and fL(E) is the Fermi–Dirac
distribution function for the left electrode.

2. Cluster energy structure and the current

The computation of the current requires finding single-
-cluster eigenstates with the appropriate energy levels.
The first task is then a diagonalisation of the three-
band Hubbard Hamiltonian, projected onto a single clus-
ter, with a two-site hybridisation Ĥpd between the d(f)
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atomic states of the central cations and p or s states of
the anions, considered a perturbation, while temporarily
neglecting a possible inter-block hybridisation. The on-
-site Coulomb repulsion at the cation sites is restricted
to its maximal part between opposite-spin electrons. For
our purpose, it turns out to be sufficient to consider four-
dimensional Hilbert space per cluster. The original basis
consists of two single-electron d states at the cation with
mutually opposite spins and energies equal to Ed and
Ed + U , respectively, and two 2p states with opposite
spins and the same energy Ep which are localised with
equal probability at all of the anions of the cluster. As
a result of the diagonalisation with respect to the intra-
-block hybridisation, four “active” single-fermion eigen-
states of each block (Ψµi,ms) are obtained in the form
of linear combinations of the originally selected states.
Coefficients of the wave functions explicitly depend upon
the Hubbard parameter, U and so do the corresponding
energy levels. For the states with the spin ms one obtains
Eµi,ms = 1

2
(Ed + Ep) ± 1

2

√
(Ed − Ep)2 + 4V 2

pd, whereas
for those with the opposite spins one gets Eµi,−ms =
1
2
(Ed + U + Ep)± 1

2

√
(Ed + U − Ep)2 + 4V 2

pd. i = 1, 2, 3
labels the ionic blocks and µ = 1, 2, 3, 4 labels their re-
spective eigenstates [1–3]. In our convention, ms is the
spin number projection, attached to the states µ = 1, 3,
whereas −ms is the spin number projection of µ = 2, 4.
In the new basis, consisting of the four hybridised eigen-
states per a block, creation (Ψ̂+

µi
) and annihilation (Ψ̂µi)

fermion operators are defined (cf. [3–5]). Consequently,
the truncated Hamiltonian of the chain coupled to the
metallic electrodes can be rewritten in a simple quadratic
form [1]:

Ĥc =
∑
µi

EµiΨ̂
+
µi

Ψ̂µi +
∑
µi,νj

(
Vpd(µi, νj)Ψ̂+

µi
Ψ̂νj + h.c.

)

+
∑

µi,k,m′
s

(
Vµi(k, m′

s)Ψ̂
+
µi

ĉk,m′
s
+ h.c.

)
, (2)

where Vpd(µi, νj) = 〈Ψνj |Ĥpd|Ψµi〉δmsm′
s

and analo-
gously, Vµi(k, m′

s) = 〈φk,m′
s
|ĤT |Ψµi,ms〉δmsm′

s
. ĉ+

k,m′
s

and ĉk,m′
s

are the second quantisation operators for elec-
trodes. As seen, no spin flipping processes are induced.
An external magnetic and/or molecular field (B) can sig-
nificantly change the mutual positions of the cluster’s en-
ergy levels. Shifts of the energy levels can be computed
in the first order of the perturbation theory, considering
the Zeeman term as a perturbation, with possible orbital
contribution to the magnetic moment [2].

In frequency space, matrix elements of the 2 × 2 ma-
trix Green functions Gr, which are needed for the com-
putation of the left spin and/or charge current, are
〈〈Ψ̂+

µ1
; Ψ̂µ′1〉〉rω, where a short-hand (Zubarev) notation is

introduced. For ms-contribution to the current µ1, µ
′
1 =

1, 3, whereas for −ms-contribution µ1, µ
′
1 = 2, 4. The

anticommutator retarded Green functions can be de-
rived with the equation-of-motion technique [3–5]. The
method yields two separate sets, each of six linear equa-

tions, for two spin orientations. These equations can be
solved numerically, however, formulae for the retarded
Green functions can be also written explicitly. Ma-
trix elements of the 2 × 2 matrix line-width functions
ΓL,ms are proportional to Vµ1(k,ms)V ∗

µ′1
(k,ms), where

again µ1, µ
′
1 = 1, 3 refers to the “up-spin” current and

µ1, µ
′
1 = 2, 4 for the “down-spin” current. Since the at-

tention is to be focused on a crucial role of the Coulomb
on-site interaction and also, on the new way of treating
it, proposed in the paper, a more detailed discussion of
the line-width function will be given elsewhere. Here,
the line-width matrix elements (Vµi(k,m′

s)) are simply
parameterised and put equal to one another (VT ).

3. Results and discussion

The spin current–voltage characteristics for different
values of the Hubbard parameter, U , both without and
with the external magnetic field are presented in Fig. 1.
The current is computed at low temperature. The dia-
grams in Fig. 1 clearly prove validity of the thesis that
U can be responsible for separation of the opposite-spin
contributions to the current. The effect, however, is bet-

Fig. 1. The spin current vs. voltage for different values
of U and B and temperature T = 10 K.

ter visible in a presence of the magnetic field, which sin-
gles out the quantisation axis, breaking an invariance of
the Hamiltonian with the respect to the exchange of the
spin indexes (see the curve U = 5 eV and B = 0 in Fig. 1
and the analogous curve in Fig. 2). The resonant-like
form of the curves in Fig. 1, reflects the energy structure
of the cluster with the peaks, corresponding to transitions
between its energy levels, connected with the appropriate
spin flips. For U = 0 and B = 0 the spin current must
vanish because each cluster has only two hybridised spin-
-degenerated energy levels, the charge current, however,
occurs in the system (Fig. 2). As shown in Fig. 2, the



262 A. Lehmann-Szweykowska, R.J. Wojciechowski, R. Micnas

Fig. 2. The charge current vs. voltage for different val-
ues of U and B and temperature T = 10 K.

influence of U on the charge current is much less pro-
nounced than it is in the case of the spin current and
their step-like form reflects nicely the energy structure of
the ionic clusters. All the curves actually represent not
the net current, but only its one (left) branch.

To close the discussion let us briefly summarise the
main conclusions. The proposed simple model can be
applied to any system, whose building units are ionic
blocks. The original H–A Hamiltonian, projected onto
a single ionic cluster, is diagonalised by linear combina-
tion of molecular orbitals (LCMO) method. The mini-
mal but sufficient set of four active eigenstates per clus-

ter is established to provide the convenient basis for the
further procedure. The separation of the opposite-spin
eigenstates, due to the on-site Coulomb repulsion at the
cations, included in the formalism, gives rise to the dif-
ferent opposite-spin currents, without spin polarisation
at the electrodes. The interaction with the field is taken
into account by the appropriate Zeeman term in the orig-
inal Hamiltonian. The influence of either molecular or
an external magnetic field both emphasises and enriches
the effect. The Meir–Wingreen formulae for the spin
and charge currents are computed in terms of the ma-
trix retarded Green functions, defined in the basis of the
single-cluster active eigenstates. The occurrence of the
spin current is favoured in ferromagnetic semiconductors
and/or with magnetically-ordered electrodes.
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