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Magnetic Field Effect on Sound Propagation

in Antiferromagnets

A. Pawlak and B. Fechner

Faculty of Physics, Adam Mickiewicz University
Umultowska 85, 61-614 Poznań, Poland

On the basis of the theory of phase transitions, a model describing anomalies of sound attenuation coefficient
close to the antiferromagnet–paramagnet phase transition in magnetic field was developed. The scaling behaviour
of the sound velocity and attenuation coefficient was determined. The physical origin of the two-peak structure
in the field dependent ultrasound attenuation observed in a number of antiferromagnets was identified. The
theoretical results were compared with experimental results obtained for terbium.
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1. Introduction

The interest in antiferromagnetic spin systems has
grown considerably during the last decade. Many ex-
perimental and theoretical studies have been made on
anomalous ultrasonic behaviour near the transition tem-
perature [1, 2]. Much of the effort has been devoted to
understanding of the effect of the external field on the
critical sound propagation [3–5]. In antiferromagnets the
weak external magnetic field usually does not destroy the
continuous phase transition both for the magnetic field
lying parallel to the antiferromagnetic order parameter
as well as for that perpendicular to the order parameter.
High magnetic fields may change the phase transition
into the first order one as for example in metamagnets [6].
In low magnetic fields, the Néel temperature changes ac-
cording to the relation: TN(H) = TN(0)−aHζ , where the
exponent ζ is equal to 2 in the mean field approximation.
The situation is very similar to that in the ferromagnet in
a perpendicular field where the field causes a shift in the
transition temperature and does not destroy the contin-
uous transition. As a consequence of a shift of the Néel
temperature the peak in the sound attenuation and the
minimum in the sound velocity are also shifted towards
lower temperatures. The scaling relations for the sound
attenuation coefficient α(T, ω, H) and the sound velocity
c(T, ω,H) take the following forms:

α(T, ω, H) = ω2t(H)−ρsf(ωt(H)−zν), (1)

c2(T, ω, H)− c2
0± = ±t(H)±αg(ωt(H)−zν), (2)

where t(H) = T−TN(H)
TN(H) is the reduced temperature mea-

suring the distance to the critical point, ρs is the sound
attenuation critical exponent and f, g are scaling func-
tions [7–9] (which can be different above and below the
Néel temperature); c0± are background sound velocities.
Generally, the sound attenuation exponent takes differ-

ent values for two classes of magnetic materials. It is
2α for the magnets being also insulators (α is the spe-
cific heat critical exponent) and ρs = zν ±α in magnetic
metals, where z is the dynamic critical exponent and ν
the correlation length exponent. The plus sign refers to
low-frequency regime and minus to the high-frequency
regime in metals [7]. In Eqs. (1) and (2) it is under-
stood that the system is far from a multicritical point
such as a tricritical, bicritical or tetracritical one which
is expected for sufficiently high magnetic fields [10, 11]
in many antiferromagnets.

2. Position of the sound attenuation peak

Essentially the same expressions apply to ferromagnets
in perpendicular field. When the magnetic field is applied
along the hard axis, the transverse field does not destroy
the continuous transition and only shifts the Curie tem-
perature so that the peak in the sound attenuation coef-
ficient is moved towards lower temperatures as a result
of decreasing Curie temperature. In a ferromagnet in
transverse magnetic field, the magnetic field H should
be replaced by the perpendicular field H⊥ and the Néel
temperature by the Curie temperature TC(H⊥).

The narrow peak in the sound attenuation is also
shifted in both cases. The temperature at which the
sound attenuation coefficient has its maximum is de-
scribed by the equation

Tmax(H)− TN(0) = −aωzv − bH2 − cH4. (3)
Expression (3) applies also to the ferromagnets in the
perpendicular field as is illustrated for MnP in Fig. 1,
where a, b, c are some constants and ω is the ultrasound
frequency. The first term in Eq. (3) describes the zero-
-field shift of the attenuation peak with respect to the
critical temperature. It originates from the relaxational
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or the Landau–Khalatnikov contribution to the sound at-
tenuation [13, 14] that is the only one which contributes
to the sound damping in the mean-field theory. In the
Landau–Khalatnikov mechanism the sound attenuation
maximum as well as the sound velocity minimum occur
slightly below the transition temperature, i.e. at the tem-
perature at which the reduced frequency (in the ordered
phase) y− ≈ 1. The other two terms in Eq. (3) come from
the shift of the critical temperature in the mean-field ap-
proximation (the term vM6 is added to the Landau free
energy).

Fig. 1. The plot of |tmax| in MnP as the function of H2
⊥.

The parabola corresponds to Eq. (3). The ultrasonic
data for MnP are taken from [12].

3. Additional broad maximum in the sound
attenuation coefficient

In some antiferromagnets (but not in all) as for ex-
ample in Tb [15] or MnSi [16] the attenuation shows a
broad peak above the Néel point. The second broad max-
imum in the sound attenuation coefficient has been also
found in the paramagnetic phase of MnP [12] when a per-
pendicular field was applied. The effect of the magnetic
field on the critical sound damping was investigated by
Tachiki and Maekawa [17] who recognised that the addi-
tional broad peak above the critical temperature comes
from the uniform susceptibility. Its contribution to the
sound attenuation is given by

∆α ∝ ωM2Imχ(ω, T,H), (4)
where M is the induced magnetic polarisation and
χ(ω, T, H) is the dynamic susceptibility connected with
uniform (q = 0) fluctuations. In the Van Hove approxi-
mation χ(ω, T, H) = 1

−iω/Γ+χ(T,H)−1 it is determined by
the static susceptibility χ(T, H), where Γ is the spin re-
laxation rate. The crucial point is the field and tempera-
ture dependence of the static susceptibility. The general
phenomenological model of interacting staggered N(x)
and uniform M(x) magnetic order parameters is defined
by the following Ginzburg–Landau functional:

F =
1
2

∫
ddx

[
r1N

2 + (∇N)2 + r2M
2 + (∇M)2

+u11N
4 + u12N

2M2 + u22M
4 −HM

]
, (5)

where r1 ∝ T − T 0
N and r2 ∝ T − T 0

C with T 0
N and T 0

C

being the bare Néel and Curie temperature, respectively.
In antiferromagnets it is assumed that T 0

N−T 0
C > 0. The

static susceptibility of the paramagnetic phase (N = 0)
as a function of temperature and magnetic field is shown
in Fig. 2 for three different Curie temperatures. It is

Fig. 2. The susceptibility of the paramagnetic phase as
a function of the temperature and magnetic field. The
height of the peak decreases with increasing magnetic
field. Three different Curie temperatures are considered
in order to show that only for TC ≈ TN the susceptibility
peak appears at temperatures higher than TN(H).

easy to see that only for TC ≈ TN the susceptibility peak
appears at temperatures higher than TN(H). Thus the
Curie temperature should not be much lower than the
(zero-field) Néel temperature. As the magnetic field in-
creases the Néel temperature decreases and the tempera-
ture Tmax at which the uniform susceptibility peak occurs
increases. Below the Néel temperature TN(H), due to the
interaction with the staggered magnetisation different ex-
pression for the susceptibility applies and the peaks on
the left side of TN(H) are not observed in the experi-
ment. Such a favourable situation of very close magnetic
transitions appears in terbium where TN − TC ≈ 10 K
(TN ≈ 228.5 K) and second broad peak in the sound at-
tenuation was observed [12]. For a high magnetic field
the location of this peak is given by

Tmax − TN ∝ H
1+zν

∆ , (6)
which in the mean-field approximation (MFA) gives
tPmax ∝ H

4
3 . In Fig. 3 the plot of tPmax vs. H for Tb

is given. Index “P” refers to the broad maximum in
the paramagnetic phase. The height of this maximum is
given by αP

max ∝ H−zν/∆ (for high magnetic fields) which
is illustrated in Fig. 4. Closeness of the Curie and Néel
temperatures is not a sufficient condition for the occur-
rence of the second peak in the ultrasonic attenuation.
Some relations between the coefficients uij in Eq. (5)
must also be satisfied in order for the transition to remain
continuous with increasing magnetic field. For example
in the metamagnets we usually expect u11 = u22 = u12/6
[11] and for very close TC and TN the transition becomes
first order. On the other hand, for transverse ferromag-
nets u11 = u22 = u12/2 [18] the phase transition remains
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Fig. 3. The reduced temperature tmax =
TP
max−TN(0)

TN(0)

as a function of the magnetic field. The ultrasonic data
for Tb are taken from [15].

Fig. 4. The height of the broad ultrasonic attenuation
peak in the paramagnetic phase as a function of the
magnetic field. The data are from [15].

continuous for TC2 approaching TC1, where TC1 is the
easy axis Curie temperature and TC2 is the correspond-
ing temperature for the perpendicular axis.
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