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The ultrasound velocity and attenuation are investigated in ferromagnets under an application of magnetic
field. In the magnetic field six different characteristic regimes are distinguished instead of traditional two
(hydrodynamic and critical) found for the case of zero magnetic field. The mean-field Landau–Khalatnikov theory
as well as the scaling predictions are given for each regime. Various critical exponents are identified for these
regions and compared with the ultrasonic data for MnP. The shift of the ultrasonic attenuation peak under the
influence of magnetic field towards higher temperatures is discussed.
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1. Introduction

The dynamics of ultrasound near the magnetic criti-
cal point is a very interesting area in which one can test
modern concepts of the phase transition theory such as
the scaling or the universality of critical exponents. The
sound attenuation coefficient and velocity are strongly
affected by an external magnetic field. In the ferromag-
nets the positions of the maxima in attenuation and the
minima in sound velocity depend on the magnitude and
direction of the magnetic field [1]. It is known [1, 2] that
under the influence of magnetic field applied along the
easy axis the ultrasonic attenuation peak is shifted to-
wards higher temperatures. The scaling expressions for
the sound attenuation coefficient are discussed in this
paper and compared with the results of the Landau–
Khalatnikov (LK) theory.

2. Ultrasonic attenuation in magnetic field

For the ferromagnets the magnetic field is coupled to
the order parameter so the non-zero magnetic field de-
stroys the phase transition. However, still a maximum in
the susceptibility is observed at a temperature Tχ

max(H)
higher than the Curie point TC [3] of the ferromagnet.
The temperature of this maximum in susceptibility in-
creases with increasing magnetic field H because accord-
ing to the scaling theory

χ(t, H) =
∂M

∂H
= t−γfχ(H/t∆)

= H−γ/∆gχ(tH−1/∆), (1)
where t = T−TC

TC
is the reduced temperature, ∆ = γ + β

is the gap exponent and fχ and gχ are scaling func-
tions. The susceptibility maximum can be obtained from
the equation: (∂χ/∂H)H ∝ t−(γ+1)(1 − a2H

2/t2∆ +
a4H

4/t4∆ + . . .) = 0, where the expansion in the powers

of H was used (a2, a4, . . . are coefficients) and only the
leading terms were left. It follows immediately from this
expansion that for low magnetic fields tχmax ∝ H1/∆ [4].
The height of the susceptibility peak decreases as the
magnetic field increases.

It is well known that in the absence of the magnetic
field, the critical behaviour of the sound attenuation co-
efficient is characterised by the scaling relation [5, 6]
α(t, ω) ∝ ω2t−ρsf±(y), where f± is the scaling function
(which can have different form above and below TC),
y = ωτ0

c t−zν is the reduced frequency and ω the ul-
trasonic frequency; τ0

c is a bare critical relaxation time
for the order parameter fluctuations and ρs is the crit-
ical sound attenuation exponent. In the magnets that
have also metallic properties large sound attenuation crit-
ical exponents are usually measured [7] and the so-called
Murata–Iro–Schwabl regime is expected [5, 6, 8, 9], where
ρs = zν+α can be expressed by specific-heat (α) and cor-
relation length (ν) exponents and the dynamic critical
exponent z. When the magnetic field is zero the sound
attenuation maximum as well as the sound velocity min-
imum occur slightly below the transition temperature,
i.e. at the temperature at which the reduced frequency
y− ≈ 1, where the index denotes the low-temperature
phase. The peak in the sound attenuation below the
transition temperature is due to the static polarisation
M = 〈S(x)〉 of the order parameter and it is the analogue
of the Landau–Khalatnikov sound damping [10] which is
the only one which contributes to α(t, ω) in the mean-
-field theory. In magnetic fields it was observed however
that the sound attenuation peak is shifted towards higher
temperatures and can be located even at the tempera-
tures much higher than TC.

It was recognised by Tachiki and Maekawa [1] that this
shift of the sound attenuation maximum is due to the
competition between the fluctuation term (which is the

(229)



230 A. Pawlak

Fig. 1. The shift of the sound attenuation peak as a
result of the competition between the LK term and the
fluctuation contribution. The height of the peak de-
creases with increasing magnetic field intensity.

only one present in zero magnetic field above TC) and
the LK term known also as the relaxational contribu-
tion, which appears whenever a static polarisation takes
a non-zero value. In Fig. 1 we illustrate the competition
between the LK term α(t, ω,H)LK ∝ ω2 M(t,H)2χ(t,H)2

1+[ωτ0
c χ(t,H)]2

,
and the fluctuation term, which is calculated in the Gaus-
sian approximation. The magnetisation M(t,H) and the
susceptibility χ(t,H) are calculated within the Landau
theory e.g.

M(t,H) =
−21/3 a

u(
27H

u +
√

108( a
u )3 + 729(H

u )2
)1/3

+

(
27h

u +
√

108( a
u )3 + 729(H

u )2
)1/3

3 · 21/3
,

where the Landau–Ginzburg Hamiltonian has been used:
F (M) = 1

2aM2 + 1
4uM4 − HM with a ∝ T − TC. It

is seen in Fig. 1 that the height of the attenuation peak
decreases and its location moves to the right as the mag-
netic field increases.

3. Scaling

Another challenge is the construction of the scaling
theory of critical sound attenuation in an external mag-
netic field. In general, the sound attenuation coefficient
consists of a few terms (in addition to the LK term and
the fluctuation contribution there is also a mixing term
[11, 12]). These terms combine in the scaling region giv-
ing a single critical exponent and the scaling function. In
other words in the scaling region there should be cancel-
lations between different contributions and the critical
sound attenuation exponent should be the same as in
the disordered phase without the magnetic field [13, 12].
Only the scaling function should include an additional
field variable. Thus the scaling relation for the sound at-
tenuation coefficient takes the form

α(t, ω, H) ∝ ω2t−ρsf(ωt−zν ,Ht−∆) or (2)

α(t, ω, H) ∝ ω2H−ρs/∆g(ωH−zν/∆, tH−1/∆), (3)
where f and g are the sound attenuation scaling functions

[5, 6]. This is a generalisation of the corresponding for-
mula for the sound attenuation in zero field. The scaling
functions need to be determined theoretically as well as
experimentally. So far only some mean-field results have
been obtained [1, 14–16] and the measurements far from
critical temperature were carried out in MnP [2]. How-
ever, some results can be immediately guessed from the
formulae (2) and (3). First of all, let us notice that in the
case without the field the scaling functions f±(y) tend to
some constants as y → 0 and f±(y) ∝ y−ρs/zν for y →∞.
The last relation explains the finite value of sound atten-
uation coefficient at the critical point (y = ∞). The
range of parameter space (t, ω̃) near the critical point
(0, 0) for which y ¿ 1 is called the hydrodynamic range
(or regime) and that for which y À 1 is called the critical
range. Here ω̃ = ωτ0

c is a dimensionless variable which
can be compared with tzν (ω̃ = tzν if y = 1). Addition of
one variable to the parameter space induces the appear-
ance of six instead of two (hydrodynamic and critical
one) characteristic regimes in the space (t, ω̃, h) where a
dimensionless field h was introduced (h = H/H0 with
H0 being a characteristic magnetic field of the system).
They can be specified by the sequence of the leading,
next to leading and the smallest variable or by the lead-
ing behaviour of α(t, ω, H) and the first correction to it.
Thus the six sequences or six characteristic regimes are
defined by:

H1 : α ∝ ω2|t|−ρs [1− a±ω2|t|−2zν + . . .]

for h1/∆ ¿ ω1/zν ¿ |t|,
H2 : α ∝ ω2|t|−ρs [1 + b±h2|t|−2∆ + . . .]

for ω1/zν ¿ h1/∆ ¿ |t|,
H3 : α ∝ ω2h−ρs/∆[1− c±ω2h−2zν/∆ + . . .]

for |t| ¿ ω1/zν ¿ h1/∆,

H4 : α ∝ ω2h−ρs/∆[1 + d±|t|h−1/∆ + . . .]

for ω1/zν ¿ |t| ¿ h1/∆,

C1 : α ∝ ω2−ρs/zν [1− e±|t|ω−1/zν + . . .]

for |t| ¿ h1/∆ ¿ ω1/zν ,

C2 : α ∝ ω2−ρs/zν [1− f±h2ω−2∆/zν + . . .]

for |t| ¿ h1/∆ ¿ ω1/zν , where a±, b±, . . . are some con-
stants which describe the amplitude of the first correction
to the leading behaviour. The regimes H1, H2, . . . are
similar to the hydrodynamic region in the case the mag-
netic field is zero and the regimes C1 and C2 correspond
to the critical (nonhydrodynamic) behaviour. Let us il-
lustrate these results on the example of the data obtained
for MnP [2]. First, Eq. (H2) predicts that for very low
magnetic fields and far from the critical temperature, the
change in the sound attenuation is ∆α = α(0)− α(h) ∝
ω2h2t−(ρs+2∆). In the mean-field approximation this re-
lation corresponds to ∆α ' ω2H2|t|−4. In Fig. 2 the
quadratic dependence on the magnetic field is shown.
The data are from the work of Komatsubara et al. [2, 1].
For very high magnetic fields and close to the critical tem-
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Fig. 2. The H2 dependence of the sound attenuation
change in MnP for the frequency f = 90 MHz. The
data are taken from [2, 1].

Fig. 3. The high field dependence of the longitudinal
sound attenuation in MnP for f = 90 MHz. The data
are taken from [2, 1]. TC = 290.8± 0.1 K.

perature the attenuation scales as α(H) ∝ ω2H−ρs/∆.
In the mean-field approximation it turns into ω2H−2/3.
The dependence of α on high magnetic fields is shown in
Fig. 3.

4. Maximum in the sound attenuation coefficient

The effect of the magnetic field on the location of the
sound attenuation maximum can also be obtained. For
very low magnetic field the temperature at which this
maximum occurs lies below TC and slightly increases with

Fig. 4. The height of the ultrasonic attenuation peak
as a function of the magnetic field. The data are
from [2].

the increase in the magnetic field intensity: Tmax−TC ∝
−ω1/zν(1 − aH2ω2∆/zν). For high magnetic fields we
obtain Tmax−TC ∝ H1/∆[( H

H1
)

zν
∆ −1] with H1 = cω∆/zν .

The height of this maximum is given by αmax ∝ H−zν/∆

which is illustrated in Fig. 4.

5. Summary

In this paper the competition between the Landau–
Khalatnikov term and the fluctuation contribution is in-
vestigated in the theory of the ultrasound attenuation in
ferromagnets under application of magnetic field. Gen-
eralised scaling expressions for the sound attenuation co-
efficient are also given. Four novel scaling regimes are
found with various critical exponents. The scaling pre-
dictions for the shift of the ultrasonic attenuation peak
under the influence of the magnetic field are obtained.
The theoretical results are compared with the ultrasonic
data for MnP.
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