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A model describing a Heisenberg ferromagnetic monolayer (in a magnetic field) interacting with its non-
magnetic bulk substrate is formulated. We use reduced-density operators to show that physical properties of
the monolayer are affected by its interaction with the environment. Particularly the influence of the substrate
lattice vibrations on the monolayer exchange parameter is examined. The Gaussian-type orbitals were used to
calculate the distance dependence of the exchange parameter and the many-body Green functions to calculate the
temperature dependence of the magnetization. Finally, the influence of the Debye temperature of the substrate
on the magnetization of the monolayer is depicted. Although the resultant effect is not prominent, we state that
interaction of ultrathin magnetic films with their environment has to be taken into account in the construction of
the reduced-density operator.

PACS numbers: 75.10.Dg, 75.10.Hk, 75.10.Jm

1. Introduction

Ultrathin magnetic films are objects of great interest,
including the theoretical point of view. Several models
have been proposed and studied using many theoreti-
cal methods to predict and explain the properties of the
films. However, in experimental and technological appli-
cations the films are very often deposited on bulk sub-
strates with which they surely interact. What is more,
the number of interacting particles is frequently of the
same order of magnitude as the total number of parti-
cles in the film. Therefore we claim that this interaction
cannot be neglected and we may use the reduced-density
operators, which include the interaction [1]. These op-
erators are derived on the basis of an approach called
quantum thermodynamics [2], which has proven to be
successful in showing that the interaction with environ-
ment can significantly change the physical properties of
ultrathin films [3].

2. Model

2.1. Reduced-density operators

According to [1], we may write the reduced-density
operator of an ultrathin film, denoted by j, interacting
with its bulk substrate, j′, in the form

dj = exp
(
β(Fj −Hj −H ′

j)
)
, (1)

where Fj and Hj stand for the films’ free energy and
Hamiltonian, respectively, while β = 1

kBT with kB being
the Boltzmann constant and T — temperature. The H ′

j

expression describes the effect of the interaction taken

into regard in the mean field-type approximation [1]:
H ′

j ' 〈Hjj′〉j′ = Trj′ [Hjj′dj′ ], (2)
where Hjj′ is the Hamiltonian describing the interaction
between systems j and j′. The mean value 〈. . .〉j′ and the
partial trace Trj′ [. . .] are calculated in the states of the
substrate’s Hamiltonian Hj′ , with the reduced-density
operator dj′ having the form similar to (1), but with no
terms describing the interaction, as it is only a small
surface effect.

2.2. Hamiltonians

For more detailed calculations, we consider the thin
film to be a monolayer of spins S = 1

2 described by the
ferromagnetic Heisenberg Hamiltonian

Hj = −B
∑

f

Sz
f −

1
2

∑

f 6=f ′
JSf · Sf ′ , (3)

where B is the magnetic field in the z-direction (perpen-
dicular to the film xy-plane), the summation runs over
neighbouring lattice sites and J > 0 is the exchange pa-
rameter. The spin operators Sf = (Sx

f , Sy
f , Sz

f ) for S = 1
2

obey the usual commutation rules (with ~ = 1)[
Sk

f , Sl
f ′

]
= iδff ′εklmSm

f ′ . (4)
We also assume that the monolayer is epitaxially de-
posited on a bulk non-magnetic simple cubic crystal, hav-
ing Na atoms of mass m. Its Hamiltonian Hj′ is written
as

Hj′ =
∑
q,p

ωq,p

(
nq,p +

1
2

)
, (5)

where nq,p = a†q,paq,p is the phonon number operator,
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while the operators a†q,p and aq,p create and annihilate
a phonon (with a wave vector q and polarisation p), re-
spectively, and they obey the bosonic commutation rules

[
aq,p, a

†
q′,p′

]
= δqq′δpp′ . (6)

Finally, the Hamiltonian describing the interaction be-
tween systems j and j′ is taken in the form

Hjj′ = −1
2

∑

f 6=f ′
(J1ug + J2u

2
g)Sf · Sf ′ , (7)

where ug is a displacement field operator, given in a form
similar to that in [4]:

ug =
∑
q,p,α

eα
q,p

√
1

2Namωq,p

× (
aq,peiq·rg + a†q,pe

−iq·rg
)
, (8)

where eα
k,p (α = x, y, z) are the unit vectors.

3. Calculations

3.1. Mean quadratic displacement

If we calculate the Hamiltonian H ′
j , using the eigen-

states |nq,p〉 of the phonon number operator nq,p, we will
see that the mean value of the displacement operator
given by (8) vanishes: 〈ug〉j′ = 0. To obtain the mean
quadratic displacement we use the Debye approximation
as in [4] and we get

〈
u2

g

〉
j′

=
9

mkBΘ

[
1
4

+
T

Θ
Φ

(
Θ
T

)]
, (9)

where Θ is the Debye temperature of the substrate and
Φ(x) is the Debye function given by

Φ(x) =
1
x

∫ x

0

dy
y

ey − 1
. (10)

It may be now noticed that the Hamiltonian given by

H = Hj + H ′
j = −B

∑

f

Sz
f −

1
2

∑

f 6=f ′
JeffSf · Sf ′ (11)

includes the effect of thermal vibrations of the substrate’s
lattice on the monolayer via the effective exchange pa-
rameter

Jeff = J + J2

〈
u2

g

〉
j′

. (12)

3.2. Exchange parameter distance dependence

In order to estimate the values J and J2 in (12), we
numerically calculate the exchange parameter as a func-
tion of the lattice constant. To do that we assume that
every spin Sf = 1

2 is described by a one-electron wave
function in the form of a Gaussian-type orbital centered
at Rf = (xf , yf , zf ):

φf (r) = (z − zf )2 exp
(−α(r −Rf )2

)
. (13)

For simplicity, we perform the calculations for only
Ns = 4 sites forming a square and choose α = 0.1. We
use the Löwdin–Carr method presented in [5, 6] to ob-
tain energies in two states described by the Slater deter-
minantal wave functions: the ferromagnetic state energy

Fig. 1. The exchange parameter as a function of
the lattice constant calculated using the Löwdin–Carr
method and the obtained polynomial fitting curve.

EF and the antiferromagnetic (Néel) state energy EAF.
The corresponding one- and two-electron integrals are
calculated according to the properties of Gaussian-type
orbitals presented in [7, 8]. Finally, we evaluate the ex-
change parameter JLC for a ceratain lattice constant a0

from

EAF − EF =
Nn

2
JLC, (14)

where Nn = 4 is the number of nearest neighbours.
The results for various lattice constants are presented
in Fig. 1. We are now able to expand the exchange pa-
rameter JLC(a) about a certain lattice constant a0 and
get

J = JLC(a0), J2 =
1
2

(
∂2

∂a2
JLC

)
(a0). (15)

3.3. Magnetization

To obtain the magnetization 〈Sz〉 of the spin S = 1
2

monolayer in the mean field theory (MFT) approxima-
tion, we use the many-body Green functions presented
in [9]. Following a couple of calculations, we get the
equation for the magnetization in the form

〈Sz〉 =
1
2

tanh
B + 4〈Sz〉Jeff

2kBT
, (16)

which may be solved self-consistently.
Results obtained for two different lattice constants

which coincide with different values of the parameters
given in (15) are presented in Fig. 2.

TABLE

The Curie temperatures TC of the ferromag-
netic monolayer obtained from (16) for differ-
ent substrate’s Debye temperatures Θ and lat-
tice constants a0.

a0 [Å] 3.5 4.0

Θ [K] 50 250 450 50 250 450

TC [eV] 14.54 14.71 14.72 15.01 15.10 15.11
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Fig. 2. The temperature dependences of the magneti-
zation 〈Sz〉 without the magnetic field (B = 0) plotted
for different substrate’s Debye temperatures Θ and lat-
tice constants: (a) a0 = 3.5 Å and (b) a0 = 4.0 Å.

What is more, using the fact that the MFT approxi-
mation violates the Mermin–Wagner theorem [9, 10], we
can calculate the Curie temperature of the monolayer.
We expand the left hand side of (16) for small 〈Sz〉
and self-consistently evaluate the Curie temperature
from TC = Jeff(TC) for different substrate’s Debye
temperatures Θ and lattice constants a0. The results
are shown in Table.

4. Conclusions

The results depicted in Fig. 2 and in Table show that
the behaviour of the monolayer’s magnetization does not
alter much with the change of the substrate’s Debye tem-
perature. This is due to the mean quadratic displace-
ment

〈
u2

g

〉
j′
≈ 10−2 Å and the value of the J2 parameter

from (15). Considering an exchange parameter Jeff with
a stronger distance dependence could have had a more
prominent effect. Moreover, taking into regard various
types of the substrate and the interaction Hamiltonians
(5), (7) could be helpful in finding how the substrate in-
fluences the film and verifying it experimentally.

We hope that more refined calculations with the use
of reduced-density operators may become useful in the
investigation of the interaction and correlation between
ultrathin magnetic films and their substrates.
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