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Conventional spin-wave approach relies on an expansion around a relevant classical (unentangled) ground
state or equivalently the ground state in the mean field approximation for the quantum model. However, for
systems which may admit valence bond ground states, such as the staggered J–J ′ Heisenberg antiferromagnet,
single site mean field approximation is obviously an incorrect zeroth order approximation. In this paper, we
introduce a mean field approximation for clusters consisting of two spins connected by a strong bond in the
aforementioned model. We identify the quantum critical point and calculate the ground state magnetization
within this cluster mean field approximation in one and two dimensions. Finally, we derive an effective dimer
Hamiltonian, in the standard basis operator formalism, which may be a basis for further spin-wave like expansions
around the cluster mean field approximation ground state.
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1. Introduction

Low dimensional Heisenberg antiferromagnets
(HAFM) play an important role in the field of quantum
magnetism due to the plethora of phases and quantum
critical points (QCP) they exhibit. In particular, systems
with non-uniform couplings such as bilayer or dimerized
HAFM offer the possibility of studying quantum phase
transitions from antiferromagnetically ordered Néel
state (NS) to valence bond (VB) phase, without the
complication of additionally introducing frustration.
In this paper, we specialize to the dimerized HAFM
(so-called J–J ′ model) with “staggered” distribution of
strong bonds (Fig. 1). Recently, it has been suggested
in [1] that the NS to VB phase transition in this model
may be described as a confinement–deconfinement
transition and may belong to different universality
class than the Heisenberg O(3) classical universality
class in three dimensions. Indeed, the latest quantum
Monte Carlo (QMC) simulations [2] seem to confirm the
latter claim. It seems therefore important to study the
aforementioned model in detail.

The staggered J–J ′ model was examined by series ex-
pansion method [3], renormalized spin-wave (RSW) ap-
proach [4], exact diagonalization and the coupled cluster
method [5], and QMC simulations [6, 2]. Most of these
metods predict a single, continuous quantum phase tran-
sition between NS and VB phases for J ′/J ratio close to
2.5, with only RSW grossly overestimating this ratio as
5.0. The latter result is suprising, since spin-wave ex-

Fig. 1. Distribution of bonds for staggered J–J ′

HAFM model. Thick lines denote stronger J ′ bonds,
dotted lines weaker J bonds. Square lattice is divided
on sublattice A (circles) and B (squares). One of the
dimers is marked by an elipse.

pansion is known as one of the most powerful methods in
the theory of low dimensional magnetic systems. The ap-
parent failure of RSW seems intuitively to be connected
with the fact that unlike in Néel ordered states, single
site mean field approximation (MFA) clearly is an incor-
rect zeroth order approximation for states with VB order,
as in the staggered J–J ′ HAFM. Conventional spin-wave
approach centrally relies on an expansion around a clas-
sical ground state or equivalently the ground state in the
MFA for the quantum model — indeed in the frustrating
regime J ′ < 0, when the ground state may be approxi-
mated by a classical helical state the RSW works quite
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well [4]. Therefore in this paper, we introduce an MFA
for dimers, in the hope of developing a spin-wave like ex-
pansion for dimers viewed as a composite 3

2
spins. The

J–J ′ HAFM Hamiltonian on the square lattice reads

H = J ′
∑

〈i,j〉′
SiSj + J

∑

〈i,j〉
SiSj = Hdim + Hint, (1)

where both sums run over pairs of nearest neighbors. The
first sum over 〈i, j〉′ includes strong, intra-dimer, bonds
with coupling constant (J ′ > J > 0), while the sum
over 〈i, j〉 includes inter-dimer bonds with coupling con-
stant J . Let us note that the staggered distribution of
strong bonds (Fig. 1) consists of pairs of sites belonging to
sublattices A and B taken in the same order. Therefore,
if we introduce the “dimer site” number l, we can un-
ambiguously relabel all the original lattice sites by their
dimer number supplemented by the sublattice label (A
or B), so that the Hdim and Hint can be written as

Hdim = J ′
∑

l

[
1
2
(S+

A,lS
−
B,l + S−A,lS

+
B,l) + Sz

A,lS
z
B,l

]
,

Hint = J
∑

l,δ

[
1
2
(S+

A,lS
−
B,l+δ + S−A,lS

+
B,l+δ)

+Sz
A,lS

z
B,l+δ

]
, (2)

where δ is one of the 3 vectors emerging to the left of a
given dimer connecting it with its nearest neighbors (see
Fig. 2).

Fig. 2. Effective lattice for dimers is triangular. Bonds
are directed. Interaction of spin A from one dimer with
spin B from another dimer is denoted by an arrow (from
A to B). The index δ in the text, refers to the set of
bonds pointing out of the dimer.

2. Mean field approximation for dimers

In this section, we consider an approximation within
which interactions on strong bonds are treated exactly,
while other interactions are considered in a standard
mean field manner. This leads to the following Hamilto-
nian (up to a constant term) of noninteracting dimers in
an effective field:

HMF =
∑

l

{
J ′

[
1
2
(S+

A,lS
−
B,l + S−A,lS

+
B,l) + Sz

A,lS
z
B,l

]

+J(z − 1)m(Sz
A,l − Sz

B,l)
}

, (3)
where m = 〈Sz

B〉 = −〈Sz
A〉 and z is the coordination

number of the original lattice (let us note that the term
(z−1)m multiplies each spin in a dimer, hence the dimer
treated as an entity has 2(z− 1) nearest neighbors in the
effective lattice in accordance with Fig. 2). The eigen-
states of a single dimer take the form

|1〉 = sin φ| ↑↓〉 − cos φ| ↓↑〉, |3〉 = | ↑↑〉,
|2〉 = cos φ| ↑↓〉+ sin φ| ↓↑〉, |4〉 = | ↓↓〉, (4)

where sin 2φ = J′
J(z−1) for J ′ < J(z − 1) and 1 oth-

erwise. Here, |1〉 is the dimer ground state with en-
ergy E0 = −J′

4 − J(z−1)
2 for J ′ < J(z − 1) and − 3J′

4
otherwise. We note that this ground state form coin-
cides with the trial variational function considered in [5].
In the notation of Eq. (4), the sublattice magnetization
m = 1

2 cos 2φ, which leads to

m =
1
2

√
1−

[
J ′

J(z − 1)

]2

, (5)

for J ′ < J(z−1) and 0 otherwise. A quantum phase tran-
sition from Néel to VB phases occurs for J ′/J = z − 1,
which for the square lattice is 3.0 — a quite promis-
ing value considering the simplicity of the approxima-
tion. The above treatment can also be applied to the
one-dimensional dimerized J–J ′ HAFM system yielding
a critical value J ′/J = 1, which in this case happens to
be exact. Therefore, it seems that the described MFA
for dimers is a good zeroth order approximation, on
top of which a low energy effective theory, analogous to
spin-wave expansion, can be constructed by treating the
dimers as composite four-level systems (abstract spin- 3

2

sites). Unfortunately, interactions between dimers, de-
scribed in terms of the standard spin- 3

2
operators are

rather cumbersome. A more fruitful avenue in this re-
gard is to resort to the standard basis operator (SBO)
formalism [7].

3. The Hamiltonian in SBO formalism

The standard basis operators form the simplest ma-
trix basis for (sub)systems with a finite number of states.
With respect to a given chosen basis of states (here de-
noted by the first letters of the Greek alphabet) corre-
sponding to a subsystem at a given site l, the standard
basis operators are Ll

αβ = |αl〉〈βl|, i.e.

Ll
αβ |γl〉 = δβγ |αl〉 and (Ll

αβ)† = Ll
βα. (6)

Choosing each site to now correspond to a dimer, we
can write the original spin- 1

2
operators in the basis of

dimer states (4) (where φ is to be determined once again):

S+
A,l = sin φ(Ll

32 + Ll
14) + cos φ(Ll

24 − Ll
31),

S−A,l = (S+
A,l)

†,

S+
B,l = cos φ(Ll

32 − Ll
14) + sin φ(Ll

24 + Ll
31),

S−B,l = (S+
B,l)

†,

2Sz
A,l = sin 2φ(Ll

12 + Ll
21)− cos 2φ(Ll

11 − Ll
22)
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+Ll
33 − Ll

44,

2Sz
B,l = − sin 2φ(Ll

12 + Ll
21) + cos 2φ(Ll

11 − Ll
22)

+Ll
33 − Ll

44. (7)
Using (7) we can now recast original Hamiltonian (1) into
the form

H = −
∑

l,αα′
hαα′L

l
αα′

−
∑

l,δ

∑

αα′,ββ′
Tαα′,ββ′(l, l + δ)Ll

αα′L
l+δ
ββ′ , (8)

where the non-zero elements of matrix [h] are

h11 = J ′
(

1
2

+ sin 2φ

)
/2, h22 = J ′

(
1
2
− sin 2φ

)
/2,

h33 = h44 = −J ′/4, h12 = h21 = J ′/2 cos 2φ, (9)
and the tensor [T ] consists of 256 elements of which the
non-zero read

T32,23 = T42,24 = T24,13 = T12,33 = T44,12

= −J

4
sin 2φ, (10a)

T31,13 = T41,14 = T13,24 = T23,14 = T12,44 = T33,12

=
J

4
sin 2φ, (10b)

T32,42 = T32,13 = T41,24 = T41,31

= −J

2
sin2 φ, (10c)

T42,32 = −T13,32 = −T24,41 = T31,41

= −J

2
cos2 φ, (10d)

T11,11 = T22,22 = −T22,11 = −T11,22 =
J

4
cos2 2φ,(10e)

T12,21 = T21,12 = T12,12 = T21,21 =
J

4
sin2 2φ, (10f)

T33,33 = T44,44 = −T33,44 = −T44,33 = −J

4
, (10g)

−T33,11 = T11,33 = −T44,22 = T22,44 = T33,22

= −T22,33 = T44,11 = −T11,44 =
J

4
cos 2φ, (10h)

T11,12 = T12,11 = −T22,12 = −T12,22

= −J

8
sin 4φ, (10i)

and Tij,kl = Tji,lk. The derivation of the Hamiltonian (8)
is the final point of this paper and it forms the basis for
further work. Let us notice that the Hamiltonian (8) has
a simple bilinear form (typical of the SBO), which should
therefore be suitable for further calculations, despite the

complicated interactions in the dimer basis. Importantly,
decoupling the terms Ll

αα′L
l+δ
ββ′ in (8) in a mean field

manner, and setting 〈L11〉 = 1 and all other averages
〈Lαα′〉 = 0 leads to the earlier results for the dimer MFA
derived in the previous section. Thus, the Hamiltonian
(8) is well suited to be treated using the SBO formalism
Green function equation of motion method [8], wherein
the effects of inter-dimer correlations can be accounted
for, allowing the calculation of long-range spin-wave like
excitations in this system.

4. Summary and further work

In this paper, we introduced a mean field approxima-
tion for clusters consisting of two spins connected by a
strong bond in the staggered J–J ′ Heisenberg antiferro-
magnet, and showed that this is a good zeroth order ap-
proximation for this system. Based on this, we derived
an effective dimer Hamiltonian, in the SBO formalism,
which to our knowledge has not been hitherto considered
in this context. The standard mean field approximation
for the latter Hamiltonian results in the introduced clus-
ter mean field approximation. Therefore, the obtained
Hamiltonian in the SBO formalism may be a good basis
for further spin-wave like expansions around the cluster
MFA ground state.
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