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We demonstrate that the seminal one-dimensional model of the Heisenberg magnet, consisting of N spins
1/2 with the nearest-neighbour isotropic interaction, solved exactly by Bethe ansatz, admits an interpretation
of a system of r = N/2 − M pseudoparticles (spin deviations) which are indistinguishable, have hard cores
and move on the chain by local hoppings. Such an approach allows us to construct a manifold with some
boundaries, which is genericly r-dimensional, and whose F -dimensional regions, 0 < F < r, point out all
l-strings. The latter classify, in terms of rigged string configurations of Kerov, Kirillov and Reshetikhin, all
exact Bethe eigenfunctions. In this way, we interpret these eigenfunctions in terms of the classical configu-
ration space, in particular on the structure of islands of adjacent spin deviations, in a way independent of the size N .
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1. Introduction

It is well known that the Heisenberg model of a mag-
netic ring, consisting of N spins 1/2 with the isotropic
nearest-neighbour interaction, is the seminal example
of a completely integrable system, so the correspond-
ing Hamiltonian eigenproblem is solved exactly by the
Bethe ansatz (BA) [1–3]. The analytic form of BA
eigenfunctions is usually specified for a fixed number
r = N/2 − M spin deviations from the ferromagnetic
saturation |++ . . . +〉, with M being the magnetization,
an exact quantum number resulting from the rotational
symmetry. This fact allows one to interpret the corre-
sponding Hilbert space H(r) as that of a quantum sys-
tem of r Bethe pseudoparticles which move on the ring
by hoppings between nearest neighbours. Here we aim to
point out a classical counterpart of this quantum system
along a general Schwinger scheme of unitary geometry
for finite-dimensional Hilbert spaces [4–6]. In particular,
we discuss here, in some detail, the geometry of the re-
sulting classical configuration space for this system in the
limit N →∞, with the fixed number r of the Bethe pseu-
doparticles. We also indicate the way in which exact BA
eigenfunctions, classified in terms of rigged string con-
figurations along the Kerov–Kirillov–Reshetikhin (KKR)
bijection [7–9], emerge from appropriate boundaries of
the classical configuration space.

2. The classical counterpart of the quantum
system of r Bethe pseudoparticles

on the magnetic ring

Let
Ñ = {j = 1, 2, . . . , N} (1)

be the set of nodes of the magnetic ring, such that
(j, (j+1)modN) is a pair of nearest neighbours for j ∈ Ñ ,
and

Q(r) = {j = (j1, j2, . . . , jr)|1 ≤ j1 < j2 < . . .

< jr ≤ N} (2)
— the set of all magnetic configurations with r spin de-
viations. Each vector j ∈ Q(r) is readily identified with
one of possible positions of the system of r Bethe pseu-
doparticles, and the set Q(r) exhausts each such position
exactly once. Thus the quantum Hilbert space H(r) of
this system is the linear closure of this set over the field
C of complex numbers, which we write as

H(r) = lcCQ(r), (3)
and treat the set Q(r) as an orthonormal basis of H(r),
i.e.

dimH(r) =
∣∣∣Q(r)

∣∣∣ =
(

N
r

)
. (4)

It allows us to identify the set Q(r), along the general
picture of the Schrödinger quantisation, as the classical
configuration space (i.e. the set of all admissible posi-
tions) for the quantum system

r̃ = {α = 1, 2, . . . , r} (5)
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of the Bethe pseudoparticles. Moreover, the set Q(r) can
be presented as [10]:

Q(r) = [Ñ×r̃/D(N, r)]/Σr, (6)
that is, as the generic stratum of the action of the sym-
metric group Σr on the r-th Cartesian power Ñ×r̃ of the
set Ñ , with D(N, r) being the set of all coincidences of
two or more pseudoparticles on the same node (the fat
diagonal).

In other words, Q(r) acquires the status of the classi-
cal configuration space for the system r̃ of indistinguish-
able hard-core particles, with Ñ being the corresponding
space for a single particle, Σr playing the role of the Pauli
indistinguishability group, and the fat diagonal D(N, r)
assuring that two spin deviations cannot occupy the same
node.

3. The geometry of the classical
configuration space

The identification of Q(r) as the classical configuration
space, i.e. the set of all positions of the system, seems to
be somehow formal until one imposes a notion of prox-
imity between various points of this set. It can be read-
ily done in two aspects: local and global one. The local
aspect is determined in terms of the action of the Heisen-
berg Hamiltonian H in the space H(r), namely (cf., e.g.
[10])

Ĥ |j〉 =
∑

j′∈Q
(r)
j

(
∣∣j′〉− |j〉), j ∈ Q(r), (7)

where |j〉 ∈ H(r) is the quantum state corresponding to
the magnetic configuration j ∈ Q(r), and Q

(r)
j is the set

of all such magnetic configurations j′ ∈ Q(r) which differ
from |j〉 at exactly one component jα, α ∈ r̃, and then
j′α = (jα± 1)modN . In other words, Q

(r)
j is the set of all

nearest-neighbour magnetic configurations of j in Q(r),
and the Hamiltonian acts locally.

It is clear that each Bethe pseudoparticle α ∈ r̃ defines
a spatial variable jα ∈ Ñ , such that for j in a general
position, when

j(α±1)modr 6= (jα ± 1)modN, α ∈ r̃, (8)
that is, when none spin deviation is a nearest neigh-
bour of the preceding or following one on the chain
Ñ , all variables jα, α ∈ r̃, are independent. In other
words, the classical configuration space Q(r) is genericly
r-dimensional.

If, however, some Bethe pseudoparticles do not satisfy
the condition (8), and thus form some islands of consec-
utive spin deviations on the chain Ñ , then each such an
island contributes just one independent spatial variable
(since internal degrees of freedom are frozen by kinemati-
cal restrictions — pseudoparticles inside an island cannot
move). Such cases constitute some boundaries of Q(r),
with the local dimension F equal to the total number of
such islands. Clearly,

1 ≤ F ≤ r (9)

and each value of F within this range corresponds to some
structures of islands of spin deviations on the classical
configuration space Q(r).

The global aspect of the geometry of Q(r) is associated
with the fact that Ñ is a ring. Formally, one introduces
the translation operator CN ∈ ΣN in H(r) which acts on
a magnetic configuration j = (j1, j2, . . . , jr) as

CN |j1, j2, . . . , jr〉 = |{(j1 + 1)modN, . . . ,

(jr + 1)modN}〉, j ∈ Q(r), (10)
where the curly bracket indicates the peri-
odic boundary conditions, so that, in partic-
ular, |{(j1 + 1)modN, . . . , (N + 1)modN}〉 =
|1, (j1 + 1)modN, . . . , (jr−1 + 1)modN〉. It follows
that each orbit O[j] = {j, CNj, . . . , CN−1

N j} ⊂ Q(r)

should also constitute a ring, and thus all “Cartesian
axes” jα, α ∈ r̃, in Q(r) should be globally declined
accordingly. In short, the translation group CN acts
globally on the classical configuration space Q(r), its
orbits form loops, imposing thus a nontrivial homotopy
on it.

In order to discuss homotopy properties of the config-
uration space Q(r), we introduce a model manifold for it
in the limit N →∞. Clearly, in this limit the ring Ñ be-
comes a circle S1 with the unit radius, which we denote
as the topological factor space

S1 = [0, 2π]/{0, 2π}. (11)
More formally, one says that each ring Ñ , N = 1, 2, . . ., is
embedded in S1 by means of the mapping iN : Ñ → S1,
given by iN (j) = 2πj/N , j ∈ Ñ . In the following, we
refer to each mapping iN : Ñ → S1 as to an embedding,
and to the target set S1 — as to the model manifold for
a ring Ñ . Now, we need the corresponding model man-
ifold M(r) for a configuration space Q(r). We consider
thus an infinite series of classical configuration spaces
Q(r) ≡ Q(r)(N) for fixed r and N →∞. The associated
embeddings IN,r : Q(r)(N) →M(r) are determined by

IN,r(j) = s ∈M(r), j ∈ Q(r)(N) (12)
with j = (j1, . . . , jr), s = (s1, . . . , sr), and sα = iN (jα)
for α ∈ r̃. These embeddings yield the open-closed sim-
plex

∆(r) = {s ∈ Rr|0 ≤ s1 < s2 < . . . < sr ≤ 2π,

sr − s1 < 2π} ⊂ Rr (13)
whose r + 1 vertices are

w0 = (0, . . . , 0), w1 = (2π, . . . , 2π),

w2 = (0, 2π, . . . , 2π), . . . , wr = (0, . . . , 0, 2π). (14)
Faces related to sharp inequalities sα < s(α+1)modr,
α ∈ r̃, in Eq. (13) correspond to interior of the manifold
M(r) and thus should be glued appropriately, whereas
the smooth ones (i.e. 0 ≤ s1 and sr ≤ 2π) are related to
its true boundaries. It follows that

M(r) = ∆r/ ∼, (15)
where “∼” denotes the gluing (cf. [11]).



Bethe Ansatz and Geometry of the Classical Configuration Space 161

Let (NZ)r and Zr be two hypercubic lattices in Rr

with the spacings 2π/N and 2π respectively, such that
(NZ)r ⊂ Zr ⊂ Rr. Then Zr/(NZ)r ∼= Ñ×r̃, and the
simplex M(r) can be seen as a piece of the elementary
hypercube of the lattice (NZ)r. Clearly,

Q(r) = ∆(r) ∩ Z/ ∼ (16)
i.e. the classical configuration space admits a local hy-
percubic lattice structure. Intersection with true fron-
tiers of M(r) yields fictitious configurations of BA, cor-
responding to coincidences of the Bethe pseudoparticles.
Such frontiers constitute physical boundaries of the con-
figuration space. It is worth to observe that the glued
frontiers correspond to cyclic boundary conditions along
Eq. (8), associated with relabelling the system r̃ when
the last Bethe pseudoparticle (α = N) passes from the
node j = N to j = 1, and thus becomes the first one.
Such hyperfaces are not real boundaries of the classical
configuration space but rather frontiers of the Cartesian
map, and reflect homotopy properties of the model man-
ifold M(r) [11].

4. Rigged string configurations

We just sketch here that the famous Kerov–Kirillov–
Reshetikhin bijection [7] maps each magnetic configura-
tion j ∈ Q(r) to an exact BA eigenfunction KKR(j) =
νL, labelled by a rigged string configuration νL, with
ν ` r′, 0 ≤ r′ ≤ r being a partition which reflects the
composition of l-strings, and L denoting the set of quan-
tum numbers called riggings, and reflecting the quasimo-
mentum of each string. Within this context, an l-string,
associated combinatoricly with the sequence of 2l consec-
utive nodes j +1, . . . , j + l, j + l +1, . . . , j +2l, the first l
occupied by the Bethe pseudoparticles, and the last l —
by “vacuum”spins +1/2, has to originate from an island
of spin deviations of the size not smaller than l. This
observation yields a geography of strings on the classical
configuration space.

5. Conclusions

Geometry of the classical configuration space Q(r) of
the system of r Bethe pseudoparticles can be described
in terms of embedding Q(r) ⊂ M(r) into a simplex in
r-dimensional real space, which thus becomes a model
manifold for BA.

The Kerov–Kirillov–Reshetikhin bijection between all
positions j ∈ Q(r) of the system and all exact BA eigen-
functions, labelled by rigged string configurations, asso-
ciates each l-string with an island of the size l (or larger)
which constitutes an essential part of the corresponding
wave packet. Such islands are located at specified bound-
aries of the model manifold M(r).
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