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2D Falicov–Kimball Model in the Perturbative Regime

at Finite Temperatures
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Finite-temperature properties of the Falicov–Kimball model in two approximations were studied in the
perturbative regime, i.e. for t/U ¿ 1, where t = 1 is the hopping constant and U = 10 denotes the Coulomb
interaction strength. In our study, we determined the phase diagram of the model in the second order of the
perturbation theory, where it reduces to the antiferromagnetic Ising model in the emergent magnetic field. In the
fourth order, where our model constitutes the Ising model with more complicated frustrated antiferromagnetic
interactions, the phase diagram was established. The Monte Carlo method was employed to investigate the phase
transition lines. The existence of stripe ordering at finite temperatures is proved.

PACS numbers: 71.10.Hf, 75.10.Hk, 75.30.Kz, 75.40.Mg

1. Introduction

The Falicov–Kimball model (FKM) [1] is one of
simplest possible lattice model of itinerant interacting
fermions. In this model, two sorts of particles are present:
“heavy” particles described by occupation number wx,
which can take two values: 0 and 1, and quantum itiner-
ant spinless fermions, described by creation and annihi-
lation operators c†x, cx. The Hamiltonian, defined on the
subset Λ of the lattice, is

HΛ({wx}) = −
∑

x,y∈Λ

txyc†xcy + U
∑

x∈Λ

wxnx

+
∑

x∈Λ

µ+wx +
∑

x∈Λ

µxc†xcx. (1)

In the formula above, txy are hopping constants (in our
case much smaller than the strength of the Coulomb in-
teraction U) and we assume here that they are equal to
t, if x, y are nearest-neighbors (nn) and zero otherwise.
µ+, µ− are chemical potentials for heavy and itinerant
particles, respectively.

This model has been used to describe numerous phe-
nomena in solid state physics: semiconductor–metal
transitions, appearance of ordering(s) in mixed-valence
compounds, non-resonant Raman scattering [2].

Moreover, the behavior of the FKM can serve as a
guide in investigation of the Hubbard model, where ex-
act results still are rare. For instance, the segregation
observed in FKM would correspond to ferromagnetism
in the Hubbard model [3].

There exist numerous both rigorous and numerical re-
sults on the area of the FK model. Most of them concern
orderings in ground states and in low temperatures (for
representative sample of rigorous results see [4]). How-
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ever, temperature-driven phase transitions are much less
known.

This opportunity motivated us to investigate this prob-
lem. We begin the study from the simplest non-trivial
case, i.e. two-dimensional model at half-filling in the per-
turbative regime. In this range of parameters one can use
perturbation expansion. In the second order of pertur-
bation theory, one obtains the antiferromagnetic nn Ising
model with the Hamiltonian

H
(2)
eff = h

∑

i

si + 2
t2

U

∑

d(i,j)=1

sisj (2)

(si in the formula above is related to wi by si = wi−1/2).
In the fourth order one obtains the Ising model with com-
plicated frustrated short range (up to two lattice spac-
ings) interactions

H
(4)
eff = h

∑

i

si +
(

2
t2

U
− 18

t4

U3

) ∑

d(i,j)=1

sisj

+
6t4

U3

∑

d(i,j)=
√

2

sisj +
4t4

U3

∑

d(i,j)=2

sisj

+
40t4

U3

∑

P4,ijkl

sisjsksl +
3t4

2U3

∑

P4,ijkl

1 (3)

(P4,ijkl is a unit square plaquette spanned by sites
i, j, k, l). We study this effective model with the use
of Monte Carlo method — perhaps the most universal
method in the area of spin systems. Ground state order-
ings [5] presented in Fig. 1 are our reference point.

2. The Monte Carlo simulations

The Monte Carlo (MC) simulations presented here
are adapted from the simulations presented in [6]. We
have generated equilibrium configurations of the finite-
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-size square spin samples of the size L × L (L ≤ 54) for
fixed values of the model parameters. algorithm. Peri-
odic boundary conditions were imposed and thermaliza-
tion of the initial configurations of the length of 105 to
106 Monte Carlo steps (MCS) was applied, depending on
the size of a sample. The 48-bit random number genera-
tor was used. Each MC run was split into k (6 ≤ k ≤ 40)
segments consisting of 107 MCS to calculate partial av-
erages. In the calculation of the partial averages only
every i-th MC step contributes (6 ≤ i ≤ 10), to avoid
correlations between sampled configurations of spins in
the system.

Fig. 1. The ground state orderings for effective Hamil-
tonian (3) in the fourth order of the perturbation the-
ory. The configurations of the heavy particles (marked
by bold dots •) in parts (a), (b), (c), (d) and (e) cor-
respond to the phases referred as (0), (1), (2), (3) and
(4), respectively.

To find the phase transition points, the Binder cumu-
lant [6] QL = 〈M2

α〉2L/〈M4
α〉L was used. Here 〈Mn

α 〉L
denotes the n-th power of the α spins order parameter,
averaged over an assembly of independent samples of the
size L×L. We call this analysis the intersection method.

Fig. 2. The phase diagram of the 2D Falicov–Kimball
model on a square lattice in the second order of pertur-
bation theory. h denotes the difference of the chemical
potentials µ+ and µ− for heavy and itinerant particles,
respectively. The points, for which the calculations were
performed within this paper, are marked with ×’s and
the lines are drawn to guide eyes. Labels of phases are
explained in the caption of Fig. 1.

Assuming t/U = 1/10 and applying this method, we
obtained the phase diagram of the model with Hamilto-
nian (2) which is presented in Fig. 2. Together with the
ground state orderings [5] (Fig. 1), it makes the reference

Fig. 3. The sketch of the phase diagram of the 2D
Falicov–Kimball model on a square lattice in the fourth
order of perturbation theory. The points, for which
the calculations were performed within this paper, are
marked with symbols and the lines are drawn to guide
eyes. Labels of phases are explained in the caption of
Fig. 1.

point for investigation of the model with Hamiltonian (3).
In our study of the latter model, we started from the cal-
culation of the phase transition point at h = 0. Using
the intersection method, we obtained the critical value
kBT = 0.3280(2), marked with × in Fig. 3.

To determine the way of ordering in the system, we in-
vestigated the behavior of the cumulant Q with the use
of each of the two alternative sublattices (see Fig. 1b),
which implied the presence of phase (1). This fact was
confirmed by the behavior of the cumulant Q determined
with the use of each of the three alternative sublattices
(see Fig. 1c). We observed the parallel horizontal curves
for each value of the system size L. Analogously we deter-
mined the critical values of kBT for the phase transitions
at h = 0.1 to 0.45. The behavior of the cumulant Q gave
no evidence of phase (2) illustrated in Fig. 1c.

Only for 0.48 ≥ h ≥ 0.45 we observed small oscillations
of the values of the Binder cumulants Q having divided
the lattice into two or into three sublattices, signalizing
an increase in the contribution of the further terms in
Hamiltonian (3) to the interaction energy of degrees of
freedom, although in the latter case the lines for different
L’s still did not intersect, which meant that phase (2) was
not realized.

We univocally detected phase (2) and the next ones
presented in Fig. 1 only in the simulations for h ≥ 0.48.
Figures 4 and 5 show the exemplary kBT dependence of
the cumulants Q at h = 0.54. We can conclude that for
kBT ≤ 0.022 phase (2) appears. It follows from the de-
pendences Q(kBT ) for various L, with the use of each of
the two alternative sublattices, as illustrated in Fig. 4.
The oscillations of the values of Q and the appearance
of intersections of the dependences Q(kBT ) for even L
values, illustrated in Fig. 4 and for odd L values, illus-
trated in Fig. 5, show that phase (3) appears whose upper
boundary point can be estimated as about kBT = 0.031.
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Fig. 4. The kBT dependence of two Binder cumulants
Q calculated for the samples with different linear size
L, listed in the legend box, at h = 0.54. Each cumulant
Q was calculated from the one of two sublattices shown
in Fig. 1b. Phase (1) is absent here.

Fig. 5. The kBT dependence of three Binder cumulants
Q calculated for the odd samples. Each cumulant Q
was calculated from the one of three sublattices shown
in Fig. 1c. Phase (1) is absent here.

For higher values of kBT between 0.031 and 0.056 phase
(4) appears. Its appearance is reflected by the increase in
values of Q presented in Fig. 4 and by intersections of Q
values in Fig. 5. Above this region which the disordered
phase (0) appears. It is evident that the appearance of
phases (3) and (4) influences the behavior of the cumu-
lants explained in the captions of Figs. 4 and 5 which
allowed us to estimate the boundaries of these phases.

It is worth noting that for kBT = 0 the ground state
boundaries between phases calculated theoretically in [7]
are used, respectively h = 0.512, 0.584, 0.888 and 0.928
(see Fig. 3). They very well complement the boundaries
obtained here by the Monte Carlo simulations. Thus we
may conclude that the ground state boundaries calcu-
lated by Datta et al. [4] of h = 0.316, 0.352, 0.384 and
0.404, respectively, are hardly confirmed.

3. Conclusions

This paper presents our MC results which allowed us
to establish the finite-temperature phase diagram of the
Falicov–Kimball model on the square lattice in the per-
turbative regime. Although these results in part con-
cerning the phases (3) and (4) are based on indirect con-
clusions, our analysis evidently proves the existence of
stripe ordering also at finite temperatures in the FKM.
The earlier papers showed their existence at low T but
did not tell anything about the value of the critical tem-
perature(s). As far as we know, the only exception is the
Néel phase [2], the simplest case of our analysis.
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[2] J. Freericks, V. Zlatić, Rev. Mod. Phys. 75, 1333
(2003).

[3] J.K. Freericks, E.H. Lieb, D. Ueltschi, Commun.
Math. Phys. 227, 243 (2002).

[4] N. Datta, R. Fernandez, J. Fröhlich, J. Statist. Phys.
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