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1. Introduction

The quantum Hall effect occurs in a quasi-two-
-dimensional (2D) electron system cooled down to a very
low temperature and placed in a strong perpendicular
magnetic field B. It consists of precise quantization of the
Hall resistance and the simultaneous vanishing of longi-
tudinal resistance at a universal series of the filling factor
νe, defined as the occupation fraction of the macroscop-
ically degenerate Landau levels (LLs) or, equivalently,
as dimensionless 2D electron concentration νe = 2π%λ2

(where % is the areal density and λ =
√
~c/eB is the

magnetic length).
Integral quantum Hall effect which occurs at νe = 1, 2,

. . . , is a consequence of a single-particle cyclotron gap in
a many-electron spectrum whenever a number of LLs are
completely filled. In contrast, fractional quantum Hall
(FQH) effect [1] which occurs at fractional LL fillings is
a many-body phenomenon [2]. The FQH states in the
lowest LL occur at νe = n/(2np ± 1), where n and p
are a pair of integers; with the most prominent Laughlin
state at νe = 1/3. FQH effect occurs also in higher LLs
(νe > 1), where a partially filled excited LL is nearly
decoupled from a number of completely filled, inert lowest
levels. The key condition necessary for the FQH effect
is the formation of an incompressible quantum liquid by
the interacting electrons which partially fill a degener-
ate LL. Hence, understanding of the FQH effect involves
explanation of the emergence of a nondegenerate ground
state with an excitation gap, solely due to the Coulomb
interaction and exclusively at the special values of νe,
independent of the material or geometry of the sample.
This makes FQH effect a nice example of an emergent,
non-perturbative, many-body phenomenon in condensed
matter physics.

In the lowest LL, the experimentally observed FQH

states are elegantly explained by Jain’s composite
fermion (CF) model [3]. The CF transformation involv-
ing attachment of an even number 2p of magnetic flux
quanta φ0 = hc/e to each electron converts a partially
filled LL of electrons with strong (Coulomb) interaction
into a system of nearly noninteracting CFs in a weaker
residual magnetic field B∗ = B − 2pφ0%. The sequence
νe = n/(2np ± 1) results from the condition of a com-
plete filling of a number n of effective LLs by the CFs
(the connection of electron and CF filling factors being
ν−1
CF = ν−1

e − 2p). In filled CF shells, the weak residual
CF–CF interactions play no role and the incompressibil-
ity of νe = n/(2np ± 1) states is explained as a conse-
quence of the single-particle cyclotron gap of the CFs in
reduced field B∗.

Recently, Pan et al. [4] observed the FQH effect at
previously unexpected filling factors between two neigh-
boring Jain states, i.e. at 1/3 < νe < 2/5 (p = 1 and
n = 1 or 2, respectively) and thus corresponding to the
fractional CF filling factors, 1 < νCF < 2. In particu-
lar, the incompressible states observed at νe = 4/11, 3/8,
5/13 correspond to νCF = 4/3, 3/2, and 5/3, respectively.
Incompressibility of these states must depend on the
CF–CF interaction within a partially filled second
CF LL. Hence, they have been called “second genera-
tion” states, in contrast to the “first generation” (Laugh-
lin and Jain) states whose incompressibility can be ex-
plained within a simplified picture of essentially nonin-
teracting CFs.

The FQH experiments reveal incompressibility at a
given ν, but not its microscopic origin. Even such ba-
sic property as magnetization of the “second generation”
states is not probed directly, but only through the FQH
measurements in tilted magnetic fields (allowing rela-
tively independent control of the Zeeman spin splitting,
which affects polarized and unpolarized states in a differ-
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154 A. Wójs, J.J. Quinn

ent way). Therefore, experimental suggestion [4] of full
spin polarization of the νe = 4/11 state (and only partial
polarization of the other new states) is not completely
convincing [5]. In this paper we: (i) study two competing
spin states at νe = 4/11, (ii) show that, although hav-
ing qualitatively different many-body correlations (and
nature of elementary excitations), they both can lead to
FQH effect, and (iii) predict a transition between them
in realistic experimental conditions.

2. Energies and interactions of composite
fermions

The familiar values of second-CF-LL fillings, ν ≡
νCF − 1 = 1/3, 1/2, and 2/3 suggested analogy to elec-
tron states at the same fillings of either the lowest or the
second electron LL. However, this analogy relies on the
(not obvious and not generally true) similarity between
the short-range CF–CF and e–e pseudopotentials (inter-
action energy V as a function of pair angular momen-
tum R).

Let us denote consecutive CF LLs by CF-LLn (n =
0, 1, . . . ) and also indicate spin of a CF by an arrow
σ =↑ or ↓. To interpret the νe = 4/11 state within the
CF model (i.e., assuming a complete filled, inert CF-
LL0 ↑) we must hence resolve whether the partially filled
(ν = 1/3) second CF shell is CF-LL1 ↑ or CF-LL0 ↓. This
clearly depends on the effective cyclotron and Zeeman
energies of the CFs, and on the correlation energies in
the two competing CF-LLs.

A single CF in CF-LL1 ↑ is equivalent to a Laughlin
quasielectron (QE) — a fractionally charged quasiparti-
cle of a Laughlin liquid [2], and, similarly, a single CF in
CF-LL0 ↓ is equivalent to a Rezayi reversed-spin quasi-
electron (QER) [6]. We therefore adopt the (simplified)
notation and restate the problem as follows: Is the ex-
perimentally observed νe = 4/11 state a ν = 1/3 state of
QEs or QERs? This depends on the comparison of QE
and QER creation and correlation energies.

The numerical (exact-diagonalization) calculations
were carried out in the Haldane geometry [7]. In this
model, N particles (electrons or CFs) are confined to a
sphere, with the normal magnetic field B yielding the
desired LL degeneracy g = 2Q + 1 produced by a Dirac
monopole of strength 2Qφ0 in the center.

The QE/QER creation energies ε were obtained from
the comparison of (N ≤ 12)-electron ground states at
exactly ν = 1/3 (i.e., at 2Q = 3N − 3) and at ν = 1/3
minus one flux quantum (i.e., at 2Q = 3N −4), and with
total spin projection Sz = N/2 or N/2−1 for the QE and
QER, respectively [8, 9]. Figure 1a shows the result as a
function of the layer width w. Similarly, the short-range
behavior of QE and QER interaction pseudopotentials
V (R) were obtained from the lowest bands in the N -
electron spectra at ν = 1/3 minus two flux quanta (i.e.,
at 2Q = 3N − 5), and with Sz = N/2 or N/2− 2 [8, 9].
The long-range behavior of V (R) results from the known
−e/3 electric charge of QEs and QERs. Matching the two
limits, we obtain the result shown in Fig. 1b for w = 0.

Fig. 1. (a) Dependence of the QE and QER energies
ε on electron layer width w. (b) QEs and QERs in-
teraction pseudopotentials V (R) in an ideal 2D layer
(w = 0).

3. Incompressible states of composite fermions

Knowing the relevant pseudopotentials, the ν = 1/3
incompressible ground states of QEs and QERs can be
identified in exact-diagonalization calculation. Since
VQER(R) is similar to the electron pseudopotential in
the lowest LL, the QER form a familiar Laughlin state
at 2l = 3N − 3 (here, N is the number of QERs and l
is the angular momentum of their LL shell on a sphere).
However, VQE(R) is quite different having stronger re-
pulsion at R = 3 than at R = 1. In consequence, the
incompressible N -QE ground states are different and (on
a sphere) occur at different values of 2l.

Fig. 2. Sample N -QE excitation spectra (energy E vs.
angular momentum L; E0 is ground state energy) cor-
responding to fractional fillings ν = 1/3 and 1/2 of
CF-LL1.

Fig. 3. Discrete pair-correlation functions (Haldane
pair amplitude G2 vs. relative pair angular momentum
R) at fractional fillings ν = 1/3 and 1/2 of CF-LL1,
compared to the same fillings of LL0 (equivalent to
CF-LL0) or LL1.

From the calculations for different N and 2l (two sam-
ple spectra are shown in Fig. 2) we indeed have iden-
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Fig. 4. Number of pairs N2 (a) and triplets N3 (b)
with the minimum relative angular momentum, calcu-
lated for N electrons in LL0 (equivalent to QER’s in
CF-LL0) or QEs in CF-LL1, as a function of N/2l ≈ ν.
Incompressible states are labeled by ν.

tified the ν = 1/3 sequence of gapped ground states
at 2l = 3N − 7 (for ν = 1/2 the series is 2l =
2N−3) [10]. As seen from the Haldane amplitudes G2(R)
shown in Fig. 3, these ν = 1/3 and 1/2 ground states of
QEs have quite different short-range correlations from
the known “first generation” electron states at the same
ν in the relevant LLs. Moreover, Fig. 4 showing the num-
ber of pairs (N2) and triplets (N3) with maximum rel-
ative angular momentum (the quantity proportional to
the Haldane two- and three-body amplitudes G), makes
it evident that there are no such triplets at ν = 1/3 of
QEs (N3 = 0), i.e., that this is a paired state of the QEs
[11]. This is in contrast to a known property of a Laugh-
lin ν = 1/3 state (e.g., of the QERs), in which N2 = 0.

4. Spin phase diagram of composite fermions

Knowing the ν = 1/3 ground states of both QEs
and QERs, let us now compare their correlation ener-
gies (per particle), u = (E + Ubckg)/N . Here E is the
N -quasiparticle interaction energy and Ubckg is a cor-
rection due to the charge-compensating background. In

Fig. 5. (a) Correlation energy u in the ν = 1/3 state
of QEs or QERs as a function of their inverse number
N−1, in an ideal 2D layer (w = 0). (b) Phase diagram
(critical layer width w vs. magnetic field B) for the QE–
QER spin transition at νe = 4/11, assuming the effective
(width dependent) electron Landé g∗-factor for GaAs.
For comparison, the thick dashed line is for a constant
(bulk) value g∗ = −0.44. Two thin lines additionally
ignore the correlation energy u (adequately for ν ¿ 1).

Fig. 5a we plot u(N) obtained for w = 0 from diago-
nalization for N ≤ 12. The results of extrapolation are
uQER = −0.026 e2/λ (very close to the value for an elec-
tron Laughlin state when the charge difference e → e/3
is taken into account) and uQE = −0.013 e2/λ. The dif-
ference ∆u = uQE − uQER was recalculated in a similar
way for various widths w.

Whether QEs or QER’s will form a ν = 1/3 state at
νe = 4/11 depends on the Coulomb and Zeeman ener-
gies. The condition for the QE ↔ QER transition is
∆ε+∆u = EZ . Figure 5b shows the spin phase diagram
calculated assuming width dependence of the Landé fac-
tor g∗ appropriate for GaAs wells. Clearly, the spin tran-
sition in narrower wells shifts to higher B (∝ %e). Also,
comparison of boundaries dividing correlated QE/QER

liquids and non-interacting QE/QER gases demonstrates
the role of interactions in stabilizing the QER phase.
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[8] A. Wójs, J.J. Quinn, Phys. Rev. B 61, 2846 (2000).
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