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We investigate the Ising model on a square lattice with antiferromagnetic exchange between nearest
and next-nearest neighbors and show that at low temperatures stripe-like and droplet-like superstructures
appear. We show that the competing interactions introduce a strong frustration that could plausibly describe the
systems with dipole–dipole type interactions and pay particular attention to arrays of interacting Josephson π-rings.
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1. Introduction

It is well known that the interplay between the com-
peting interactions in many magnetic and superconduct-
ing materials as well as in complex systems leads to a
rich phase diagram with a large number of phases and
non-trivial types of ordering. As a vivid example of such
systems, we investigate here the two-dimensional (2D)
Ising model with competing antiferromagnetic nearest-
-neighbor (J) and diagonal (J ′) interactions on a square
lattice. It is now well accepted that such a model exhibits
two phases with magnetic long-range order: a semiclas-
sical Néel-like magnetic order at small J ′ and a antifer-
romagnetically coupled ferromagnetic chains (vertical or
horizontal stripes) at large J ′. These two ordered phases
are separated by an intermediate quantum paramagnetic
phase without the long-range order, the nature of which
is still under discussion.

An example of a system that may be described by such
a model is a chain or a planar array of electrically isolated
Josephson π-rings which could be treated as a set of mag-
netic moments oriented perpendicular to the plane (i.e.
as the Ising spins) and interacting via magnetic dipole
forces (taking care to include next-nearest neighbor in-
teractions) [1].

Here, we show that this model exhibits an additional
low temperature disordered phase due to the proximity
of the lowest energy excited states to the ground state
(see also [2]).

2. Model and a 5-site plaquette

The Hamiltonian for the Ising model with nearest
neighbor and next-nearest (diagonal) neighbor interac-
tions is given by

H = J
∑

〈nn〉
sisj + J ′

∑

〈dn〉
sisj + h

∑

i

si, (1)

where J, J ′ > 0, s is a two-value Ising variable s = ±1,
〈nn〉 and 〈dn〉 denote the summation over sites i and j
being respectively nearest neighbors and diagonal neigh-
bors.

For a square lattice with fixed lattice spacing, the ratio
rnn/rdn =

√
2, since dipole–dipole interactions decay as

≈ 1/r3 we have J/J ′ = 2
√

2 for the square lattice. For
the sake of generality, we will consider various values of
J/J ′ which may be applicable to distorted square lattices.

The simplest system, which may already have non-
-trivial features but contains all the physics of the model
investigated here, is a cluster consisting of five sites. Such
a cluster has a similar geometry to the square lattice, i.e.
it is a site with four neighbors (a plaquette). Further-
more, we choose this plaquette for the further analysis
because it also retains the symmetry and the charac-
teristic geometry of the lattice as a whole (the number
of nearest-neighbor and diagonal bonds are equal, see
Fig. 1).

Fig. 1. Square plaquette of the minimum size (with
equal numbers of nearest- and next-nearest neighbor
bonds).
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The possible configurations of this 5-site plaquette are
easily listed (we have 25 = 32 configurations with dif-
ferent values of energy). Knowing the energy levels and
their degeneracy it is possible to write the partition func-
tion and calculate the free energy and heat capacity of
this plaquette. Plotting the positions of heat capacity
maxima in the T/J ′−J/J ′ plane yields a kind of phase
diagram for a small plaquette (Fig. 2). Indeed, the po-
sitions of C(T/J ′, J/J ′) peaks could be related to the
actual phase transitions occurring in infinite systems.
Let us note that at J/J ′ < 2, the lowest energy corre-
sponds to a state in which ordering occurs via chains of
spins with the same direction, whereas at J/J ′ > 2, the
usual two-sublattice antiferromagnetism is the most fa-
vorable. However, at non-zero temperatures, there is no
boundary between these two phases. Instead, we have a
whole quadrant in the T/J ′−J/J ′ plane (with the ver-
tex at point (0, 2)), where one could expect numerous
phases in the infinite lattice, intermediate between the
two-sublattice and chain-like structures. The situation
is very much like that of the ANNNI model [3], where
the “devil’s staircase” of different phases arises at finite
temperatures between two main phases existing at zero
temperature. Region 3 within this quadrant is bounded
by a curve corresponding to the positions of an additional
(high-temperature) peak in the temperature dependence
of the heat capacity. Therefore, this is another indica-
tion that in the infinite system, one should expect in this
range a phase with a certain kind of ordering, maybe
quite unusual, rather than simply a disordered paramag-
netic phase.

Fig. 2. Phase diagram (positions of the heat capac-
ity peaks) for a 5-site plaquette. Region 1 corresponds
to antiferromagnetic ordering, region 2 corresponds to
stripe ordering, while in region 3, one could expect for
the corresponding infinite square lattice multiple phases
(similar to those in the ANNNI model) or a phase with
a complicated spin ordering.

For the plaquette cluster, the antiferromagnetic ground
state, having the zero entropy (non-degenerate), is very
difficult to reach. So the system is practically always
disordered due to a proliferation of defects. However,
the broad peak in specific heat indicates that a true phase

transition may arise for large systems.

3. Larger plaquettes and a glassy state

Qualitatively, the situation remains the same as we
increase lattice size. We calculated the specific heat for
an 8 × 8 lattice via the transfer matrix method and a
16× 16 lattice via the Monte Carlo method.

The phase diagram obtained for the 8 × 8 lattice is
plotted in Fig. 3. The comparison of the phase diagrams
for 8 × 8 and 16 × 16 lattices is illustrated in Fig. 4.
We find that at low temperatures there are many energy
levels lying close to the ground state effectively trapping
the system in one of these locally (meta-)stable states
associated with local energy minima separated by large
energy barriers.

Fig. 3. Phase diagrams for an 8 × 8 lattice calculated
by the transfer matrix method.

Fig. 4. Peaks in the specific heat of the 2D Ising model
with competing interactions on a square lattice using a
16 × 16 Monte Carlo simulation and an 8 × 8 transfer
matrix. The low temperature “phase transition” is not
a peak in the specific heat but rather a crossover tran-
sition.

At low temperature, one would expect the system to
exist in an ordered state with long-range order. How-
ever, the appearance of defects (locally stable droplets)
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reduce correlations to a few spins, but temporal corre-
lations due to freezing of the spins can be very strong.
Local squared magnetization is given by the average of
the autocorrelation functions. This is the order param-
eter proposed by Edwards and Anderson [4]: qEA =
limt→∞ limV→∞ [〈si(t0)si(t0 + t)〉].

Spin-glass ordering, if it can be described within the
framework of equilibrium statistical mechanics, corre-
sponds to a non-zero value of the Edwards–Anderson
order parameter. We can see from Fig. 5 that Monte
Carlo simulations clearly show the Edwards–Anderson
order parameter exploding as T/J ′ → 0. This is indica-
tive of spin-glass ordering.

Fig. 5. Edwards–Anderson order parameter for the 2D
Ising model with next-nearest neighbor interactions on
an 16 × 16 square lattice. The explosion of this order
parameter at low temperature is an indication of the
formation of a spin-glass state.

The low-temperature superstructures that appear in
this model are characterized by the formation of locally
stable droplets in the background order. This low tem-
perature phase is akin to spin-glass ordering as shown
by the Edwards–Anderson order parameter though other
order parameters may exist.

4. Conclusion

The zero value of entropy at low temperatures shows
that the ground state at low temperatures is ordered ei-
ther as stripes, J/J ′ < 2 or as the Néel antiferromagnet,

J/J ′ > 2. However, the recent findings in the frame-
work of this model [2] clearly demonstrate that the en-
ergy of defects and dislocations in the lattice is close to
the ground state of the system. Therefore, many locally
stable (or metastable) states associated with local energy
minima separated by energy barriers may appear forming
a glass-like state.

Careful preparation of the lattice could result in the
system being trapped in this glass-like state which may
be used as an initial state for adiabatic quantum com-
puting [2]. Recently, a scalable design that may be used
in such a way [5] has been proposed and realized though
the range of problems that may be solved may be lim-
ited. One such application is a Travelling Salesman Prob-
lem [6], which can be represented in the form of more
complicated Ising model, with a set of a coupling con-
stants [7].
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