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The influence of a Zeeman magnetic field on the superconducting characteristics of the attractive Hubbard
model was investigated. The ground state and temperature phase diagrams were obtained for a fixed number of
particles. Two critical magnetic fields were found for the first order phase transition from the superconducting
to the normal state for n 6= 1. For some range of parameters a reentrant transition was found and gapless
superconductivity was obtained. The significance of the Hartree term was also analyzed.
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1. Introduction

The impact of the Zeeman coupling between the
spins of the electrons and an applied magnetic field
on superconductivity has been analyzed for many years
[1–5]. One of the well-known results concerning this in-
fluence is the discovery of the so-called Clogston limit. In
the weak coupling regime (s-wave pairing), at T = 0, the
superconductivity is destroyed through the paramagnetic
effect and there is a first-order phase transition to the
normal state at a universal value of the critical magnetic
field hc = ∆0/

√
2 ≈ 0.707∆0 [1], where ∆0 is the gap

at T = 0, h = 0. Further investigations have revealed
that in the presence of magnetic field the formation of
the Cooper pairs across the spin-split Fermi surface with
non-zero total momentum (k ↑, −k + q ↓) is possi-
ble, leading to the so-called Fulde and Ferrell [3], and
Larkin and Ovchinnikov [4] (FFLO) state, which is fa-
vored (against the normal state) up to hFFLO

c = 0.754∆0.
Because of the very strong destroying influence of the or-
bital effect on the superconductivity, it is hard to observe
the above-mentioned effects in ordinary superconductors.
However, the development of experimental techniques in
cold atomic Fermi gases allows investigation of the spin
polarization on superfluidity [6–11] in a simple way. Re-
cent experiments [11] have indicated that in the density
profiles of trapped Fermi mixtures with population im-
balance there is an unpolarized superfluid core in the cen-
ter of the trap and a polarized normal state surrounding
this core (phase separation).

In this paper we analyze the influence of the Zee-
man term on the superfluid characteristics of a lattice
fermion (the spin-polarized attractive (U < 0) Hubbard)
model [12]:

H =
∑

ijσ

(tσij − µδij)c
†
iσcjσ + U

∑

i

ni↑ni↓

−h
∑

i

(ni↑ − ni↓), (1)

where: σ =↑, ↓, niσ = c†iσciσ, tσij — hopping integral, U
– on-site interaction, µ — chemical potential. The Zee-
man term can be created by an external magnetic field
(in (gµB/2) units) or by a spin population imbalance in
the context of cold atomic Fermi gases.

We consider the case of pairing only with q = 0. The
gap parameter is defined by: ∆ = − U

N

∑
i〈ci↓ci↑〉 =

− U
N

∑
k〈c−k↓ck↑〉. Applying the broken symmetry

Hartree approximation, we obtain the grand canonical
potential Ω [13] and the free energy F :
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4
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1
4
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U

− 1
βN
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2
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2

)
, (2)

where: N — number of the lattice sites, β = 1/kBT ,
M = n↑ − n↓ — spin magnetization (polarization),
nσ = 1

N

∑
k〈c†kσckσ〉 — spin-up and spin-down electron

density, n = n↑ + n↓ — electron concentration, Ek↓ =
(−t↓+ t↑)Θk + UM

2
+h+ωk, Ek↑ = (−t↑+ t↓)Θk− UM

2
−

h + ωk, ωk =
√

[(−t↑ − t↓)Θk − µ̄]2 + |∆|2 are quasipar-
ticle energies, µ̄ = µ − Un

2
. Here Θk =

∑d
l=1 cos(klal)

(d = 3 for three-dimensional lattice), al = 1 in further
considerations. Using (2), one can easily get the equa-
tions for the gap, particle number (determining µ) and
magnetization [13]: ∂F

∂∆
= 0, ∂F

∂µ
= 0, M = − 1

N
∂F
∂h

, re-
spectively. In the above equations, we have taken into
account the spin dependent Hartree term. This method
can be called a BCS–Stoner approach. In the following,
we set t↑ = t↓ = t and use t as the unit.

(138)
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2. Results

We have performed an analysis of the influence of mag-
netic field on superfluidity, focusing on the ground state
and the temperature phase diagrams for a fixed electron
concentration and indicating differences with respect to
the case of a fixed chemical potential [13]. Only selected
results will be presented below, while an extended paper
will be published elsewhere [14].

Figure 1 shows the ground state phase diagrams for
a simple cubic lattice, with critical magnetic fields for
the first order superconducting–normal (SC–NO) phase
transition vs. the chemical potential (a) and the particle
concentration (b), for three values of the on-site attrac-
tion ranging from a weak to intermediate coupling. If
the number of particles is fixed and n 6= 1, one obtains
two critical magnetic fields in the phase diagrams [13].
The two critical fields (Fig. 1b) define the phase sepa-
ration (PS) region between the superconducting phase
with the particle density ns and the normal state with
the density of particles nn, as opposed to the case of
a fixed chemical potential (Fig. 1a). Moreover, the in-
creasing on-site attraction widens the range of occurrence
of PS. One can also distinguish the partially polarized
(P = (n↑ − n↓)/(n↑ + n↓) < 1) normal state (NO-I) and
the fully polarized (P = 1) normal state (NO-II) in the
phase diagrams. The same regions appear for n > 1
because of the particle–hole symmetry. The first order
transition lines at T = 0 have been determined numeri-
cally from the condition ΩT=0

s = ΩT=0
n (where ΩT=0

n and
ΩT=0

s denote the grand canonical potential of the normal
(∆ = 0, P 6= 0) and the superconducting (∆ 6= 0, P = 0)
state, respectively).

Figure 2 shows the magnetic field–temperature (h−T )
phase diagram (3D case) for the fixed n = 0.75 and
U = −4. The lower set of curves denotes the diagram
without the Hartree term. With increasing magnetic
field, the character of the transition between SC and NO
state changes from the second order (solid line) to the
first order, which starts from the tricritical point (TCP).
We can also observe the region of the phase separation
between SC (∆ 6= 0, P 6= 0) and NO (∆ = 0, P 6= 0)
state in contrast to the (T−h) phase diagrams obtained
for a fixed chemical potential [13]. The presence of the
Hartree term raises the values of the critical magnetic
field at T = 0 for the first order transition, which ex-
ceed the Clogston limit. In the phase diagram without
the Hartree term (conventional BCS like) the PS region
is very narrow for the chosen values of the parameters.
For small |U | and n or for n = 1, the Clogston limit
is achieved in the phase diagrams without the Hartree
term. For sufficiently high fields a reentrant transition
takes place in the phase diagram with the Hartree term.
Hence, the increase in temperature can induce supercon-
ductivity. We can infer that the Hartree term can be
of importance in the context of the spin-polarized super-
conductivity and the neglect of this term may lead not
only to quantitative but also to qualitative changes in
the phase diagrams. We have also found the gapless su-

Fig. 1. The critical magnetic field vs. the chemical
potential (a) and the electron concentration (b) for the
first order SC–NO transition, at T = 0; NO-I — par-
tially polarized (P < 1) and NO-II — fully polarized
(P = 1) normal state, ε — empty state, PS — phase
separation. In (a) solid lines denote SC–NO first order
transition, dashed lines border NO-I and NO-II states,
borders between NO-II and empty states are shown by
dash-dotted line. Charge density wave (CDW) state,
being degenerated with SC for h = 0, n = 1, is not
shown.

Fig. 2. Magnetic field–temperature phase diagrams for
fixed n = 0.75, U = −4, for a simple cubic lattice.
The lower set of curves denotes the diagram without the
Hartree term. The arrow indicates TCP. The thick dot-
ted lines denote the first order phase transition. These
lines bound PS region. GSC — gapless superconduc-
tivity. The thin dashed line is merely an extension of
the 2nd order transition line below TCP (metastability
line).
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perconducting (GSC) region (Fig. 2) i.e. spin-polarized
SC, which has a gapless spectrum for the majority spin
species for some magnetic fields (h > ∆) and tempera-
tures.

3. Conclusions

We have considered the influence of a Zeeman magnetic
field on superfluid properties of the attractive Hubbard
model. The analysis has been restricted to the case of
s-wave pairing with q = 0. For a fixed number of parti-
cles and n 6= 1, one obtains two critical magnetic fields in
the phase diagrams, which limit the PS. In the PS region
not only the particle densities but also the polarizations
of the coexisting SC and NO states are different. We also
observe a reentrant transition for sufficiently high mag-
netic fields in the h−T phase diagram with the Hartree
term. Moreover, the presence of the Hartree term causes
an increase of hc of the Clogston limit. At T > 0 the
spin-polarized SC state and the gapless superconducting
region have been found in h−T phase diagrams.
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