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Mixed State in t−U−J−V Model

B. Tobijaszewska∗ and M. Bak

Solid State Theory Division, A. Mickiewicz University
Umultowska 85, 61-614 Poznań, Poland

The t−U−J−V model in the U →∞ limit is treated by renormalized mean-field theory for arbitrary electron
density. Superconductivity of s + id symmetry is found in the large parts of the phase diagram. Calculations also
show a possibility of phase separation.
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1. Introduction

The mean-field approximation (MFA) is one of the
most widespread methods in the theory of the condensed
matter. It is relatively simple but quite crude, so the
need for more refined treatments emerges. One of them
is renormalized mean-field approximation (RMFA) [1, 2],
similar in use to MFA but in spirit reminding the
Gutzwiller method or its slave-boson variations [3]. Ap-
plied to Hubbard- or t−J-like models amounts to adding
a doping-dependent weighting factors both to the hop-
ping and to the interaction parts of the Hamiltonian, fol-
lowed by the MFA scheme. The hopping-term weighting
factor is precisely the band-narrowing factor of the slave-
boson theory [4].

In the present paper the RMFA method is applied to
the t−U−J−V model in the U → ∞ limit. The results
are applicable also to t−J-like models in general. Keep-
ing finite on-site repulsion U during intermediate stages
of calculations, to take U → ∞ limit in the end enables
us to obtain proper low density limit (i.e., two-electron
bound state with finite critical value), incorrectly given
in standard t−J model treatment [5]. Considering the
V-term is equivalent to using anisotropic t−J model.

2. The method

We start with the extended Hubbard Hamiltonian
t−U−J−V :

H = −t
∑

〈ij〉σ
(c†iσcjσ + h.c.)− µ

∑

i

ni + U
∑

i

ni↑ni↓

+J
∑

〈ij〉
(Si · Sj − 1

4
ninj) + V

∑

〈ij〉σ
niσnj−σ. (1)

We calculate operator averages in the BCS states
|BCS〉 =

∏
k(uk + vkc†k↑c

†
−k↓)|0〉 with the double occu-

pancies projected out by the Gutzwiller projector PG =
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∏
i(1− ni↑ni↓). Then we use the Gutzwiller approxima-

tion, which introduces the doping dependent factors gt

and gS (multiplying hopping integral and interaction J ,
respectively), while taking the averages back in the BCS
states. In the end the MFA is done and U = ∞ limit is
taken. To be exact, the projection removes the double oc-
cupancy term and all correlations induced by it, but such
a procedure seems too stringent. Even in the U = ∞
limit, where there is no doubly occupied states, some
U -induced correlations remain, e.g., a superconducting
gap, defined as ∆0 = U〈ci↓ci↑〉 [6]. Therefore, we re-
tain the U -term during MFA, keeping the on-site term
in the mean-field superconducting gap, and take U = ∞
limit in the end of calculations, omitting U -terms in the
free energy and chemical potential. In MFA we calculate
the charge density 〈n〉 and superconducting averages of
the type 〈ci↓cj↑〉 and 〈ci↓ci↑〉, omitting Fock-type aver-
ages 〈c†iσcjσ〉 to simplify calculations. Thus, we retain
only the antiparallel spin terms in the nearest-neighbor
Coulomb interaction in Eq. (1).

The Hamiltonian which is subject to MFA decomposi-
tion is given by Eq. (1), with integrals t and J replaced
by gtt and JgS respectively, where

gt = 2
1− n

2− n
, gS =

4
(2− n)2

. (2)

After introducing standard order parameters and after
the procedure of minimization (see, e.g. [7]) the free en-
ergy takes the form

F/N = µ(n− 1) + ( 1
2
JgS + V )n2

+
1
N

∑

k

|∆k|2
2Ek

− 2
βN

∑

k

ln 2 cosh
βEk

2
, (3)

where Ek =
√

(−tgtγk − µ)2 + |∆k|2. The self-
-consistent equation for superconducting gap: ∆k =∑

q V s
kq〈c−q↓cq↑〉 is given by

∆k =
∑

q

V s
kq

|∆q|2
2Eq

, (4)

(135)
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where V s
kq = U − (V − JgS)γk−q is singlet pairing poten-

tial, γk = 2(cos kx + cos ky), ηk = 2(cos kx− cos ky). The
gap equation can be further simplified using an ansatz:
∆k = ∆0 + ∆γγk, ∆k = ∆ηηk, ∆k = ∆0 + ∆γγk + ∆ηηk,
∆k = ∆0 +∆γγk +i∆ηηk for s∗-wave, d-wave, s+d-wave
and s+id-wave pairing, respectively. Inserting the ansatz
in Eq. (4) we can obtain equations for variational param-
eters ∆0, ∆γ , ∆η; e.g., in case of pure on-site pairing the
equation for ∆0 is 1/U = (1/N)

∑
k ∆0/2Ek. Limit U →

∞ simplifies this equation to 0 = (1/N)
∑

k ∆0/2Ek. In
the most complicated case of s + d pairing, we have to
solve three equations in the form

0 = ∆0Φ1 + ∆γΦγ + ∆ηΦη, (5)

− z

V − JgS
∆γ = ∆0Φγ + ∆γΦγ2 + ∆ηΦηγ , (6)

− z

V − JgS
∆η = ∆0Φη + ∆γΦηγ + ∆ηΦη2 , (7)

where z is number of nearest neighbors. In the ground
state, for T = 0, Φ1 = 1

N

∑
k

1
2Ek

, Φη = 1
N

∑
k

ηk

2Ek
,

etc. Equations for d-wave and extended s-wave can be
obtained by omitting respective deltas in Eqs. (5)–(7).
In case of s + id-pairing, equations for s and d formally
decouple (yet they stay still connected by Ek). All these
equations have to be solved together with the equation
for electron density n:

n− 1 = − 1
N

∑

k

−tgtγk − µ

Ek
. (8)

Let us note that, unlike the standard BCS-MFA, ∆’s are
only variational parameters. The true superconducting
gap is gt∆ [1]. Also µ is variational parameter; the true
chemical potential is given by ∂(F/N)/∂n; in the ground
state

µ = µ +
∂

∂n
(( 1

2
JgS + V )n2)

+
∂

∂gt

(
− 1

N

∑

k

Ek − 1
N

∑

k

|∆k|2
2Ek

)
∂gt

∂n

+
∂

∂gS

(
− 1

N

∑

k

Ek − 1
N

∑

k

|∆k|2
2Ek

)
∂gS

∂n
. (9)

To perform these calculations we need the derivative of
∆k with respect to electron density. The way to do it is
shown below, on an example of s∗-wave pairing

∂∆k

∂ gS
= −J

∑
q

1
z
γq〈c−q↓cq↑〉γk = −J

∆γ

V − JgS
γk.(10)

Chemical potential calculated this way is more compli-
cated than simple µ and shows nonmonotonic behavior,
as will be shown in the next section.

3. Results

Calculations have been performed on a two-
dimensional square lattice with nearest neighbor hopping
in the ground state. The Hartree-Fock (HF) results show
stabilization of superconductivity for attractive intersite
interaction V [8]. For V larger than threshold value for
binding of two-electron pair, s-wave superconductivity

appears for small electron densities [9]. d-wave is possi-
ble for the whole range of densities, yet for small |V | its
energy gain over normal state is exponentially small. The
phase diagram for the pure phases is shown in Ref. [10].
Present calculations show that most of the phase diagram
is occupied by the mixed phase of the symmetry s + id
(see also [11]). The phase diagram obtained within HF
MFA for J = 0 and U = ∞ is shown in Fig. 1 by a thin
full line.

Fig. 1. Phase diagram of the t−U−J−V model for
J = 0 in the U = ∞ limit within the HF MFA (thin
full line) and RMFT (thick full line) method. Dotted
lines show where the condensation energy of the d- and
s-wave pairing, calculated within HF MFA, is the order
of 10−6. The dashed lines are boundaries, below which
solutions of pure s-wave pairing exist: upper, thick one
calculated in RMFT, lower one in HF.

Within the area surrounded by this line (i.e., for larger
|V | and larger fillings) the mixed, s + id-wave pairing is
stabilized. Above the quasi-horizontal thin full line only
the d-wave pairing can exist. Virtually for the whole
range of attractive interaction V , but in practice at the
dotted line the condensation energy reaches 10−6. Above
this line the condensation energy is even smaller, so we
call this area a quasi-normal phase. To the left of the
quasi-vertical thin, full line only s-wave pairing exists.
At the dotted line the condensation energy again reaches
10−6. The lower dashed line is line of possible second
order transition: ∆ → 0. This mean-field boundary
line for the existence of s-wave type superconductivity
smoothly goes over into an exact threshold for the ex-
istence of a bound 2-electron pair in the n → 0 limit.
It is also a threshold for s-wave superconductivity for
low densities [9]. The upper dashed line is the same
boundary line calculated within RMFT. It is strongly
renormalized for larger electron densities relative to HF
values and reaches V = 0 at half-filled band, meaning
that there is no threshold for existence of mean-field
s-wave solutions at n = 1. Therefore the use of RMFT
enhances s + id-wave pairing for larger electron densities
on the expense of pure d-wave. Nevertheless, at half-
filling and close to it the superconductivity is not real-
ized due to settling of antiferromagnetic (AF) phase. In
present paper AF phase is not calculated, yet the ex-
istence of non-superconducting state close to half-filling
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shows by appearing of the phase-separation close to the
n = 1. The phase-separation appears both in calcula-
tions of free energy, using the Maxwell construction as
well as in negative compressibility dµ/dn, in calculations
of true chemical potential using Eq. (9).

The thick full lines show the boundary of s + id phase
calculated within RMFT. The s-wave, quasi-vertical
boundary is relatively close to the HF one, the renormal-
izations are small for small n. The boundary with pure
d-wave is shifted much in the direction of smaller |V |
and reaches V = 0 for the half-filled band. This bound-
ary also lies close to the RMFT pure-s border, just as in
HF case.

In conclusion, the HF MFA and RMFT methods were
used to analyze superconductivity in the t−U−J−V
model in the U = ∞ limit. Both pure phases and s + id
phase were examined, showing the domination of the
latter over the pure ones. Almost always in the areas
where both components ∆s+id

s and ∆s+id
d are non-zero

the mixed phase s + id dominates over pure ones. The
∆s+id

s disappears close to the boundary of existence of
pure s-wave mean field solutions. These conclusions are
obtained by both the HF and RMFT methods, with the
difference that in RMFT for larger fillings the region of
d-wave pairing is suppressed in favor of s + id-wave.

The present calculations did not take into account the
fugacity factors [12]. The Gutzwiller projection without
those factors change the average number of electrons in
the system, which can have influence on the chemical
potential and other density-dependent functions. This
problem is under investigation.
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