Mixed State in \(t-U-J-V \) Model

B. Tobijaszewska* and M. Bak

Solid State Theory Division, A. Mickiewicz University

Umultowska 85, 61-614 Poznań, Poland

The \(t-U-J-V \) model in the \(U \rightarrow \infty \) limit is treated by renormalized mean-field theory for arbitrary electron density. Superconductivity of \(s+i \)d symmetry is found in the large parts of the phase diagram. Calculations also show a possibility of phase separation.

PACS numbers: 74.20.–z, 74.20.Rp, 74.25.Dw, 71.10.Fd, 71.27.+a

1. Introduction

The mean-field approximation (MFA) is one of the most widespread methods in the theory of the condensed matter. It is relatively simple but quite crude, so the need for more refined treatments emerges. One of them is renormalized mean-field approximation (RMFA) \([1, 2]\), similar in use to MFA but in spirit reminding the Gutzwiller method or its slave-boson variations \([3]\). Applied to Hubbard- or \(t-J \)-like models amounts to adding a doping-dependent weighting factor both to the hopping and to the interaction parts of the Hamiltonian, followed by the MFA scheme. The hopping-term weighting factor is precisely the band-narrowing factor of the slave-boson theory \([4]\).

In the present paper the RMFA method is applied to the \(t-U-J-V \) model in the \(U \rightarrow \infty \) limit. The results are applicable also to \(t-J \)-like models in general. Keeping finite on-site repulsion \(U \) during intermediate stages of calculations, to take \(U \rightarrow \infty \) limit in the end enables us to obtain proper low density limit \((i.e., \text{two-electron bound state with finite critical value})\), incorrectly given in standard \(t-J \) model treatment \([5]\). Considering the \(V \)-term is equivalent to using anisotropic \(t-J \) model.

2. The method

We start with the extended Hubbard Hamiltonian \(t-U-J-V \):

\[
H = -t \sum_{\langle ij \rangle} (c_i^\dagger \sigma c_j^\sigma + \text{h.c.}) - \mu \sum_i n_i + U \sum_i n_{i\uparrow} n_{i\downarrow} + J \sum_{\langle ij \rangle} (S_i \cdot S_j - \frac{1}{2} n_i n_j) + V \sum_{\langle ij \rangle} n_{i\sigma} n_{j\bar{\sigma}}. \tag{1}
\]

We calculate operator averages in the BCS states \(|BCS\rangle = \prod_k \langle u_k + v_k c_{k\uparrow}^\dagger c_{k\downarrow}^\dagger \rangle |0\rangle \) with the double occupancies projected out by the Gutzwiller projector \(P_G = \prod_i (1 - n_{i\uparrow} n_{i\downarrow}) \). Then we use the Gutzwiller approximation, which introduces the doping dependent factors \(g_t \) and \(g_s \) \((\text{multiplying hopping integral and interaction } J, \text{respectively})\), while taking the averages back in the BCS states. In the end the MFA is done and \(U = \infty \) limit is taken. To be exact, the projection removes the double occupancy term and all correlations induced by it, but such a procedure seems too stringent. Even in the \(U = \infty \) limit, where there is no doubly occupied states, some \(U \)-induced correlations remain, e.g., a superconducting gap, defined as \(\Delta_0 = U (c_i^\dagger c_i^\uparrow) \) \([6]\). Therefore, we retain the \(U \)-term during MFA, keeping the on-site term in the mean-field superconducting gap, and take \(U = \infty \) limit in the end of calculations, omitting \(U \)-terms in the free energy and chemical potential. In MFA we calculate the charge density \(\langle n \rangle \) and superconducting averages of the type \(\langle c_i^\dagger c_{j\uparrow} \rangle \) and \(\langle c_i^\dagger c_i^\uparrow \rangle \), omitting Fock-type averages \(\langle c_i^\dagger c_i^\downarrow \rangle \) to simplify calculations. Thus, we retain only the antiparallel spin terms in the nearest-neighbor Coulomb interaction in Eq. (1).

The Hamiltonian which is subject to MFA decomposition is given by Eq. (1), with integrals \(t \) and \(J \) replaced by \(g_t t \) and \(J g_S \) respectively, where

\[
g_t = \frac{1 - n}{2 - n}, \quad g_s = \frac{4}{(2 - n)^2}. \tag{2}
\]

After introducing standard order parameters and after the procedure of minimization \((\text{see, e.g.} \ [7])\) the free energy takes the form

\[
F/N = \overline{F}(n-1) + \left(\frac{1}{2} J g_S + V\right)n^2 + \frac{1}{N} \sum_k \frac{\Delta_k^2}{2E_k} - \frac{2}{\beta N} \sum_k \ln 2 \cosh \frac{\beta E_k}{2}, \tag{3}
\]

where \(E_k = \sqrt{(-t g_k \mathbf{c}_k - \overline{\mathbf{F}})^2 + |\Delta_k|^2} \). The self-consistent equation for superconducting gap: \(\Delta_k = \sum_q V_{kq}^* \langle c_{-q\uparrow} c_{q\downarrow} \rangle \) is given by

\[
\Delta_k = \sum_q V_{kq} \frac{\Delta_q^2}{2E_q}, \tag{4}
\]

* Former member of the Solid State Theory Division, A. Mickiewicz University.
where \(V_{kq}^z = U - (V - J g s) \gamma_{kq} \) is singlet pairing potential, \(\gamma_k = 2(\cos k_x + \cos k_y) \), \(\eta_k = 2(\cos k_x - \cos k_y) \). The gap equation can be further simplified using an ansatz: \(\Delta_k = \Delta_0 + \Delta_{\gamma} \gamma_k, \Delta_k = \Delta_0 + \Delta_{\eta} \eta_k, \Delta_k = \Delta_0 + \Delta_{\eta} \eta_k + i \Delta_{\eta} \eta_k \) for \(s \)-wave, \(d \)-wave, \(s + d \)-wave pairing, respectively. Inserting the ansatz in Eq. (4) we can obtain equations for variational parameters \(\Delta_0, \Delta_{\gamma}, \Delta_{\eta} \); e.g., in case of pure on-site pairing the equation for \(\Delta_0 \) is \(1/U = (1/N) \sum_k \Delta_0/2E_k \). Limit \(U \to \infty \) simplifies this equation to \(0 = (1/N) \sum_k \Delta_0/2E_k \). In the most complicated case of \(s + d \) pairing, we have to solve three equations in the form

\[
0 = \Delta_0 \phi_1 + \Delta_{\gamma} \phi_{\gamma} + \Delta_{\eta} \phi_{\eta},
\]

\[
-\frac{z}{V - J g s} \Delta_1 = \Delta_0 \phi_1 + \Delta_{\gamma} \phi_{\gamma} + \Delta_{\eta} \phi_{\eta},
\]

\[
-\frac{z}{V - J g s} \Delta_2 = \Delta_0 \phi_1 + \Delta_{\gamma} \phi_{\gamma} + \Delta_{\eta} \phi_{\eta}.
\]

where \(z \) is number of nearest neighbors. In the ground state, for \(T = 0, \phi_1 = \frac{1}{\bar{N}} \sum_k \frac{\eta_k}{\eta_k}, \phi_{\gamma} = \frac{1}{\bar{N}} \sum_k \frac{\eta_k}{\eta_k}, \phi_{\eta} = \frac{1}{\bar{N}} \sum_k \frac{\eta_k}{\eta_k}, \) etc. Equations for \(d \)-wave and extended \(s \)-wave can be obtained by omitting respective deltas in Eqs. (5)–(7).

In case of \(s + id \)-pairing, equations for \(s \) and \(d \) formally decouple (yet they stay still connected by \(E_k \)). All these equations have to be solved together with the equation for electron density \(n \):

\[
n - 1 = -\frac{1}{\bar{N}} \sum_k [g_k \gamma_k - \bar{N}] E_k.
\]

Let us note that, unlike the standard BCS-MFA, \(\Delta \)'s are only variational parameters. The true superconducting gap is \(g_k \Delta \) [1]. Also \(\bar{N} \) is variational parameter; the true chemical potential is given by \(\partial(F/N)/\partial n \); in the ground state

\[
\mu = \bar{N} + \frac{\partial}{\partial n} ((\frac{1}{4} J g s + V) n^2)
\]

\[
+ \frac{\partial}{\partial g s} \left(-\frac{1}{\bar{N}} \sum_k E_k - \frac{1}{N} \sum_k \frac{\Delta_k^2}{2E_k} \right) \frac{\partial g s}{\partial n}
\]

\[
+ \frac{\partial}{\partial g s} \left(-\frac{1}{\bar{N}} \sum_k E_k - \frac{1}{N} \sum_k \frac{\Delta_k^2}{2E_k} \right) \frac{\partial g s}{\partial n}.
\]

To perform these calculations we need the derivative of \(\Delta_k \) with respect to electron density. The way to do it is shown below, on an example of \(s \)-wave pairing

\[
\frac{\partial \Delta_k}{\partial g s} = -J \sum_q \frac{1}{z} \gamma_q (c_{-q} c_{q}) \gamma_k = -J \frac{\Delta_k}{V - J g s} \gamma_k.
\]

Chemical potential calculated this way is more complicated than simple \(\bar{N} \) and shows nonmonotonic behavior, as will be shown in the next section.

3. Results

Calculations have been performed on a two-dimensional square lattice with nearest neighbor hopping in the ground state. The Hartree-Fock (HF) results show stabilization of superconductivity for attractive intersite interaction \(V \) [8]. For \(V \) larger than threshold value for binding of two-electron pair, \(s \)-wave superconductivity appears for small electron densities [9]. \(d \)-wave is possible for the whole range of densities, yet for small \(|V| \) its energy gain over normal state is exponentially small. The phase diagram for the pure phases is shown in Ref. [10]. Present calculations show that most of the phase diagram is occupied by the mixed phase of the symmetry \(s + id \) (see also [11]). The phase diagram obtained within HF MFA for \(J = 0 \) and \(U \to \infty \) is shown in Fig. 1 by a thin full line.

Within the area surrounded by this line (i.e., for larger \(|V| \) and larger fillings) the mixed, \(s + id \)-wave pairing is stabilized. Above the quasi-horizontal thin full line only the \(d \)-wave pairing can exist. Virtually for the whole range of attractive interaction \(V \), but in practice at the dotted line the condensation energy reaches \(10^{-6} \). Above this line the condensation energy is even smaller, so we call this area a quasi-normal phase. To the left of the quasi-vertical thin, full line only \(s \)-wave pairing exists. At the dotted line the condensation energy again reaches \(10^{-6} \). The lower dashed line is line of possible second order transition: \(\Delta \to 0 \). This mean-field boundary line for the existence of \(s \)-wave type superconductivity smoothly goes over into an exact threshold for the existence of a bound 2-electron pair in the \(n \to 0 \) limit.

It is also a threshold for \(s \)-wave superconductivity for low densities [9]. The upper dashed line is the same boundary line calculated within RMFT. It is strongly renormalized for larger electron densities relative to HF values and reaches \(V = 0 \) at half-filled band, meaning that there is no threshold for existence of mean-field \(s \)-wave solutions at \(n = 1 \). Therefore the use of RMFT enhances \(s + id \)-wave pairing for larger electron densities on the expense of pure \(d \)-wave. Nevertheless, at half-filling and close to it the superconductivity is not realized due to settling of antiferromagnetic (AF) phase. In present paper AF phase is not calculated, yet the existence of non-superconducting state close to half-filling

![Fig. 1. Phase diagram of the \(t-U-J-V \) model for \(J = 0 \) in the \(U \to \infty \) limit within the HF MFA (thin full line) and RMFT (thick full line) method. Dotted lines show where the condensation energy of the \(d \) and \(s \)-wave pairing, calculated within HF MFA, is the order of \(10^{-6} \). The dashed lines are boundaries, below which solutions of pure \(s \)-wave pairing exist: upper, thick one calculated in RMFT, lower one in HF.](image-url)
Mixed State in $t-U-J-V$ Model

The authors thank Roman Micnas for useful discussions.

References