Heat Capacity of Heavy Fermion Compound CeCu$_4$Ga in High Magnetic Fields

A. Kowalczyka, T. Toliński, M. Reiffersb, M. Zapotokovab, M. Falkowskia and E. Gažob

aInstitute of Molecular Physics, Polish Academy of Sciences
M. Smoluchowskiego 17, 60-179 Poznań, Poland
bInstitute of Experimental Physics, Slovak Academy of Sciences
Watsonova 47, 043 53 Košice, Slovakia

The heat capacity in the applied magnetic field up to 9 T, susceptibility and magnetization of polycrystalline CeCu$_4$Ga are presented. Magnetic ordering was not observed down to 2 K. For temperature $T < 200$ K a Curie–Weiss behavior is observable giving an effective magnetic moment $\mu_{\text{eff}} = 2.53 \, \mu_B$/f.u. The experimental value of μ_{eff} is close to the calculated one for a free Ce$^{3+}$ ion ($\mu_{\text{eff}} = 2.54 \, \mu_B$/f.u.), thus indicating the presence of well localized magnetic moments carried by the stable Ce$^{3+}$ ions. At low temperatures the electronic heat capacity coefficient value depends strongly on the temperature range used for the extrapolation and applied magnetic field. We observe a typical heavy fermion behavior with γ value of about 380 mJ mol$^{-1}$ K$^{-2}$ obtained from extrapolation to $T = 0$ K of the temperature range above 7 K. However, extrapolation of the lowest temperatures range yields the γ value of 3.3 J mol$^{-1}$ K$^{-2}$.

PACS numbers: 65.40.Ba, 71.20.Eh, 71.27.+a

1. Introduction

Cerium based ternary compounds demonstrate different phenomena depending on the valence of the Ce ion. It is believed that the hybridization between the conducting electrons and the 4f Ce electrons should be responsible for the valence state of Ce. Depending on the strength of the f-ligand hybridization one observes in these compounds phenomena such as magnetic ordering, heavy fermion behavior, the Kondo effect, valence fluctuations and superconductivity.

We have previously studied the CeNi$_4$X (X = Al, Ga, Si) [1–3], and CeCu$_4$Al [4] compounds crystallizing in the hexagonal CaCu$_5$-type structure, space group P6/mmm. The CeNi$_4$X compounds are of special interest due to the nearly filled Ni (3d) band implying a negligible contribution of Ni atoms to the resultant magnetic moment [1–3]. In the temperature dependence of electrical resistivity we have observed a shallow minimum for CeNi$_4$X below 20 K. It has been ascribed to a Kondo-like behavior. Both the susceptibility and X-ray photoelectron spectra (XPS) show that Ce ions in CeNi$_4$X are in the intermediate valence state. The CeCu$_4$Al is known as the heavy fermion compound [4] and it is the derivate of CaCu$_5$. The estimated value of the electronic coefficient γ was of about 280 mJ mol$^{-1}$ K$^{-2}$.

In this paper we describe our studies of the magnetic (ac/dc magnetic susceptibility) and thermodynamic (heat capacity) properties of the CeCu$_4$Ga compound.

2. Experimental details

The CeCu$_4$Ga compound was prepared by induction melting of stoichiometric amounts of the constituent elements in a water-cooled boat, under an argon atmosphere. The ingots were inverted and melted several times to ensure homogeneity. The crystal structure was established by a powder X-ray diffraction technique, using Cu K_α radiation. The CeCu$_4$Ga compound crystallizes in the hexagonal CaCu$_5$-type structure, space group P6/mmm.

Heat capacity measurements were performed by PPMS commercial device (Quantum Design) in the temperature range 2–300 K by relaxation method using two-tau model.

Magnetic measurements were carried out using a vibrating sample magnetometer in a magnetic field up to 9 T using the System MagLab 2000 magnetometer.

3. Results and discussion

In Fig. 1 the temperature dependence of the inverse magnetic susceptibility $\chi^{-1}(T)$ is presented. Magnetic ordering was not observed down to 2 K. Above about 2 K, $\chi^{-1}(T)$ follows the Curie–Weiss law with the effective magnetic moment $\mu_{\text{eff}} = 2.53 \, \mu_B$/f.u. and the paramagnetic Curie temperature $\theta_p = -4.8$ K. The experimental value of μ_{eff} is close to the calculated one for a free Ce$^{3+}$ ion $\mu_{\text{eff}} = g(j(j+1))^{-1/2} = 2.54 \, \mu_B$/f.u., thus indicating a presence of well localized magnetic moments carried by
The stable Ce$^{3+}$ ions. The negative paramagnetic Curie temperature is known to enable a rough estimation of the Kondo temperature T_K as $T_K = \theta_p/2 = 2.4$ K.

Fig. 1. The temperature dependence of the inverse magnetic susceptibility for CeCu$_4$Ga. Solid line: a fit with the Curie-Weiss law.

The magnetic field dependences of magnetization for CeCu$_4$Ga are presented in Fig. 2. The temperature evolution confirms the previous observations and the absence of any ordering down to 2 K.

Fig. 2. Magnetic field dependence of the magnetic moment in different temperatures.

Figure 3 shows the temperature dependence of the heat capacity $C_p(T)$ of CeCu$_4$Ga in the temperature range 2–300 K and in zero magnetic field. We have not observed any real sign of the magnetic order down to 2 K.

Fig. 3. The temperature dependence of the heat capacity $C_p(T)$ of CeCu$_4$Ga in the temperature range 2–300 K and in zero magnetic field. Inset — the low temperature part of $C_p(T)/T$ as a function of T^2.

low temperatures ($T < 5$ K) the electronic heat capacity coefficient value depends strongly on the temperature range used for the extrapolation and on the applied magnetic field.

Fig. 4. The specific heat of CeCu$_4$Ga as the C_p/T vs. T^2 dependence in magnetic fields up to 9 T.

We tried to estimate the distance from the quantum critical point using the formula 1 from [7]:

$$\frac{C_p}{T} = \frac{\gamma_0}{2} - a \sqrt{\frac{\pi}{2}} \int_0^{\infty} \frac{d\epsilon}{\sinh^2 \epsilon} \left(\frac{r}{T} \right)^{1/2} \left(\frac{r}{T} \right)^{1/2} + (2\epsilon)^2,$$

where a is a constant, $t = T/T^*$ and r is a control parameter tuning the material through the $T = 0$ transition [7, 8]. T^* is of the order of the Kondo temperature. We have found that without studies of various doping of the compound we cannot determine r and it can be put arbitrary, therefore we use $r = 0$, which in principle makes the formula equivalent to the $T^{1/2}$ dependence for critical fluctuations close to an antiferromagnetic critical point for $T \to 0$. Simultaneously, it is found that T^* has to be varied to fit the C_p/T vs. T dependence for
various magnetic fields. Inset of Fig. 5 shows such a fit on the example of $H = 0$ T, 3 T and 6 T. Figures 5 and 6 show the field dependence of T^* and γ_0, respectively. The values of γ_0 behave in a manner consistent with the Anderson model based on the theoretical predictions of Kim et al. [9] and other calculations [10], i.e., it depends strongly on the applied magnetic field.

Fig. 5. T^* as a function of magnetic field. Inset — an example of the C_p/T vs. T fit.

Fig. 6. Electronic specific heat coefficient as a function of the applied magnetic field.

The value of $T^* = 2.4$ K is in good agreement with results of paper [5] and T_K derived above from the paramagnetic Curie temperature.

4. Conclusions

CeCu$_4$Ga is paramagnetic and follows a Curie–Weiss law with the effective magnetic moment $\mu_{\text{eff}} = 2.53 \, \mu_B/\text{f.u.}$ and the paramagnetic Curie temperature $\theta_p = -4.8$ K. We observe a typical heavy fermion behavior with γ value of about 380 mJ mol$^{-1}$ K$^{-2}$. Extrapolation of the lowest temperatures range of C_p/T yields the value of 3.3 J mol$^{-1}$ K$^{-2}$. At low temperatures ($T < 5$ K) the electronic heat capacity coefficient depends strongly on the applied magnetic field.

The Kondo temperature estimated both from the magnetic susceptibility and the specific heat measurements is about 2.4 K.

Acknowledgments

This work was supported by the funds for science in years 2007–2009 as a research project (A. Kowalczyk, T. Toliński and M. Falkowski) and partly by Science and Technology Assistance Agency — APVT-51-031704 by VEGA 6165 by the contract CE of SAS.

References