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Optimized Wannier Functions for Hubbard Chain
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One-dimensional atomic chain with a variable-range hopping is described within the extended Hubbard
model. The Gutzwiller-ansatz approximation is used to determine the optimized single-particle (Wannier) wave
functions in the correlated state. Hopping integral up to the third neighbors is taken into account and the results
are compared with those for the infinite hopping range. Ground state energy of the system is compared with that
making use of the rigorous Lieb–Wu solution with the optimized wave functions. The evolution of the properties
as a function of interatomic distance is discussed.
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1. Introduction

The infinite one-dimensional atomic chain is described
here by the extended Hubbard Hamiltonian

H = εeff
a +

∑

〈ij〉σ
tijc

†
iσcjσ + U

∑

i

ni↑ni↓, (1)

where tij — the hopping integral between the sites i
and j, U is the magnitude of the Coulomb interaction
at given site i, and

εeff
a

a.u.≡ εa +
1
N

∑

i<j

(
Kij +

2
Rij

)
(2)

is the effective atomic energy, Kij is the interaction for
electrons located on sites i and j 6= i. This energy is im-
portant as we study the system evolution as a function
of the interatomic distance R [1] and reach the proper
atomic limit when R →∞. To solve this problem we use
the optimized single-particle wave functions method [2].
We construct the Wannier wave functions {wi(r)} enter-
ing the expressions for tij , U , εeff

a , and Kij in the follow-
ing manner:

wi(r) ≡
zk,M∑

j=1,k=0

βkΨj(r), (3)

where zk is the number of atoms of k-coordination sphere
(k = 1, . . . , M), βk are the mixing coefficients, and

Ψi(r) ≡
√

α3

π
e−α|r−Ri| (4)

is the 1s-like atomic wave function centered around the
site i. The parameters βk are selected to fulfill the or-
thogonality of the basis wi(r). In the previous papers
[2] we used the simplest form of the functions (3) with
M = 1. It was sufficient in the tight binding approxima-

tion. Now we include the hopping to further atoms so
the functions must have more parameters in order to be
able to construct the orthogonal basis. We limit to the
functions (3) with M = 3.

We also test the influence of the form of the basis func-
tions for M = 1, 2 and 3 on the ground state energy. For
that we make use of the Lieb–Wu solution [3] with ground
state energy for site equal to

EG

N
= εeff

a − 4t

∞∫

0

J0(ω)J1(ω)
ω

(
1 + eωU/(4t)

)dω, (5)

where Jn(x) is the n-th order Bessel function.
In concrete calculations we represent the functions (4)

by the Gaussians composing the STO-7G basis. In or-
der to achieve the global minimum of the ground state
energy the single-particle wave functions are optimized
with respect to α.

To determine the ground state energy with a variable-
-range hopping (tk ≡ ti,i+k, k = 1, 2, 3), we use the
Gutzwiller ansatz expression [4]:

EG

N
≡ εeff

a − |ε̄| (1− U/Uc)
2
, Uc = 8|ε̄|, (6)

where ε̄ is the average bare band energy per atom. For
small enough hopping integrals t2 and t3 compared to t1,
i.e. when a length of the Fermi wave vector is kF = π/2,
the average energy ε̄ is equal to

ε̄ =
4
π

(t1 − t3/3). (7)

Let us note that in this case the average energy ε̄ does
not depend on t2.

Additionally, we study the case with infinite-range
hopping. To do this we consider the model with hop-
ping amplitudes [5]:

(114)
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tk−l = (−i|t1|)(−1)k−l sinh(κ)
sinh (κ(k − l))

, (8)

where κ is the effective range of the interaction. In the
limit κ → ∞ (and some additional transformation) we
obtain the Hubbard model with nearest-neighbor hop-
ping and in the limit κ → 0 and in the thermodynamic
limit we obtain the 1/r Hubbard model, with the hopping
decaying proportionally to the inverse of the distance.
The proper order of limits to take is the thermodynamic
limit first, and then κ → 0. In the latter case the disper-
sion relation

ε(k) =
∑

r 6=0

t(r)e−ikr (9)

takes the linear form ε = πkt1 in the whole Brillouin
zone.

2. Results

The three choices of trial functions (3), with M = 1, 2,
and 3, respectively, show that the functions with M = 2
and M = 3 lead to comparable values of the ground state
energy (the lowest energy is achieved for M = 3) and are
distinctly lower than that for M = 1. We present the re-
sults in Fig. 1. The differences are a consequence of differ-
ence of shape of the optimal Wannier functions. The op-
timal Wannier functions with M = 2 and M = 3 are very
similar and they differ from the one with M = 1. The
difference is visible mainly in tails of the functions. The
three optimized Wannier functions are shown in Fig. 2.

Fig. 1. The ground state energy of the Hubbard chain
within the Lieb–Wu solution as a function of interatomic
distance for the three forms of starting Wannier func-
tions (with M = 1, 2, 3).

The ground state energy of the Hubbard chain in the
Gutzwiller-ansatz approximation and with the variable-
-range hopping is shown in Fig. 3. In the case of hop-
ping to nearest neighbors only (tight binding approxi-
mation) we show two results. The first is obtained for
the simplest trial basis of the Wannier functions wi(r)
with M = 1 and the second for more complicated one for
M = 3. As in the case of the Lieb–Wu solution, the basis
with M = 3 leads to lower energy. When the basis with
M = 3 is used, the ground state energy is the same both
in tight binding approximation and in the model with the

Fig. 2. Exemplary forms of the optimized Wannier
functions with M = 1, 2, and 3 for the Lieb–Wu so-
lution. The lattice parameters R = 1.5a0 and the pa-
rameters of the Wannier functions are: α = 1.332/a0,
β0 = 1.435, β1 = 0.472 (M = 1); α = 1.290/a0,
β0 = 1.507, β1 = 0.550, β2 = 0.111 (M = 2); α =
1.281/a0, β0 = 1.520, β1 = 0.561, β2 = 0.124, β3 =
−0.02741 (M = 3). For details see main text.

hopping up to second neighbors. This results from ap-
plying the Gutzwiller ansatz because for all interatomic
distances under consideration, the average bare band en-
ergy does not depend on t2 (see Eq. (7)). The ground
state energy for the case of hopping up to third neigh-
bors is higher than for that for lower hopping range. This
is also a consequence of Eq. (7) because both t1 and t3
are negative (cf. Fig. 4). Let us note also the presence
of shallow minimum (as marked) in the case with the
infinite hopping range.

Fig. 3. Ground state energy of the Hubbard chain for
the case with variable-range of hopping. Calculations
were performed with the M = 3 basis. For variable
hopping the Gutzwiller ansatz was used. For compari-
son the result for the M = 1 basis is shown.

The first three hopping integrals for the Hubbard chain
as a function of R are plotted in Fig. 4. The first and
the third of them are negative, and the second is pos-
itive. Absolute values of the ratios of the consecutive
hopping integrals are comparable in magnitude, espe-
cially for larger interatomic distances. For example, for
R = 2.0a0, t2/|t1| ≈ 0.26 and |t3|/t2 ≈ 0.24.
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Fig. 4. First three hopping integrals vs. R. Inset: ra-
tios of the hopping integrals.

3. Outlook

We have determined single-particle (Wannier) wave
functions in the correlated state of electrons for the
extended Hubbard model with variable-hopping range.
Both the exact Lieb–Wu and the Gutzwiller-ansatz so-
lutions have been utilized in appropriate situations (the
former is limited only to the case with nearest neighbor
hopping). The extension of the atomic basis composing
Wannier functions (from M = 1 fo M = 3) alters the

shape of the optimized Wannier functions (cf. Fig. 2),
since upon increasing M , the orthogonality of more dis-
tanct functions can be achieved. The results for M = 2
and M = 3 are already convergent.
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