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Research Institute for Solid State Physics and Optics
P.O. Box 49, H-1525 Budapest, Hungary

The commensurate p/q-filled n-component Hubbard chain was investigated by bosonization and high-precision
density-matrix renormalization-group analysis. It was found that depending on the relation between the number of
components n, and the filling parameter q, the system shows metallic or insulating behavior, and for special fillings
bond-ordered (dimerized, trimerized, tetramerized etc.) ground state develops in the insulating phase. A mean-
-field analysis shows that this bond ordering is a direct consequence of the spin-exchange interaction, which plays a
crucial role in the one-parameter Hubbard model — not only for infinite Coulomb repulsion, but for intermediate
values as well.
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1. Introduction

Recent experimental results in ultracold gases in op-
tical lattices may be simulated by multi-component
fermionic systems in which spins can take more than two
degrees of freedom [1]. A natural candidate for the de-
scription of such systems from the theoretical point of
view is the SU(n)-symmetric generalization of the stan-
dard SU(2) Hubbard model [2] which has been investi-
gated intensively in the past by both analytic and numer-
ical approaches [1, 3–10]. In fact, this model may mimic
strongly correlated electron systems where the orbital de-
grees of freedom of d and f electrons play important role
and these extra degrees of freedom are taken into account
by considering n-component fermions.

In this paper we will further analyze the physics of the
SU(n) Hubbard model for commensurate fillings on the
basis of our earlier works [6–8]. In Ref. [7] we have studied
the occurrence of spatially nonuniform phases for special
commensurate fillings and for different values of n, and
the phase diagram of the model has been established. In
the present paper, we will discuss the physics behind the
phase diagram, and especially its implications for inter-
mediate values of the Hubbard coupling U .

2. Theory

The Hamiltonian of the model is usually written in the
form

H =
N∑

i=1

[
− t

n∑
σ=1

(
c†i,σci+1,σ + c†i+1,σci,σ

)

+
U

2

n∑

σ,σ′=1

ni,σni,σ′

]
, (1)

where N is the number of sites in the chain. The oper-

ator c†i,σ (ci,σ) creates (annihilates) an electron at site i
with spin σ, where the spin index is allowed to take n
different values. ni,σ is the particle-number operator, t is
the hopping integral between nearest-neighbor sites, and
U is the strength of the on-site Coulomb repulsion. In
what follows t will be taken as the unit of energy.

It is well known that in the weak-coupling regime the
half-filled n-component Hubbard model is an insulator
with gapped charge and spin modes (for n > 2), while
in the large U limit the system can be described — at
least for even n — by an effective Heisenberg model [3, 6].
Away from half filling, based on leading-order renormal-
ization group analysis, where the higher-order umklapp
processes do not give contribution, one can find the Lut-
tinger liquid behavior with gapless bosonic charge and
spin modes. However, one can expect that these higher
order processes become relevant for commensurate fill-
ings and cannot be neglected. To see their effect, first we
analyze how the spectrum of a Luttinger liquid is modi-
fied by these processes and then we study the occurrence
of phases with spatial inhomogeneity for special fillings.

The well-known one-particle and particle–hole exci-
tation spectrum of the two-component Luttinger liquid
[11, 12] can be easily generalized for fermions with n in-
ternal degrees of freedom

E =
∑

j

~uj
2π

L

(
nj

+ + nj
− + ∆j

+ + ∆j
−

)
, (2)

where the momentum is quantized in units of 2π/L,
and nj

± are integers describing the particle–hole type
bosonic excitations: the term j = c describes the exci-
tations of the charge mode which is the symmetric com-
bination of the bosonic phase fields φσ(x) of the corre-
sponding fermion fields, φc(x) = 1√

n

∑n
σ=1 φσ(x). The

terms j = ms describe the excitations of the n − 1

(98)
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spin modes which are independent antisymmetric com-
binations of the appropriate boson fields, φms(x) =
[m(m + 1)]−1/2 [

∑m
σ=1 φσ(x)−mφm+1(x)]. In Eq. (2)

∆j
± corresponds to the one-particle excitations: ∆j

± =
1
16 (

√
KjJj ± δNj/

√
Kj)2, where δNj is the change in

the number of particles, and Jj describes the current in
the j-th channel generated by processes which break the
chiral particle-number or spin conservation. Since the to-
tal momentum is given by

P = ~kFJc +
∑

j

~
2π

L

(
nj

+ − nj
− + ∆j

+ −∆j
−

)
, (3)

and the charge current Jc is an even number due to
the total particle-number conservation, in the thermo-
dynamic limit soft modes appear not only at zero mo-
mentum but also at even integer multiples of kF = πf
for filling f .

For commensurate filling the higher-order umklapp
processes are not irrelevant anymore, and they mod-
ify the Luttinger liquid spectrum. In the considered
restricted Hilbert space (with low-energy states), the
higher-order umklapp processes can be described only by
multiparticle scatterings in fermion representation, and
in these processes the number of scattered particles de-
pends on the filling factor f . Namely, for f = p/q filling,
exactly q particles take part in the leading-order multi-
particle umklapp processes. Therefore, due to the Pauli
principle these processes are forbidden for local interac-
tion, if q > n, and the system remains Luttinger liquid.
If, on the other hand, q ≤ n, at least for strong interac-
tions these processes are relevant, and their contribution
has to be taken into account. The q-particle umklapp
processes can be described in the terms of the bosonic
fields as

HU = g3

∫
dx

∑

{σi}′

× cos
(
2

(
φσ1(x) + . . . + φσq (x)

) )
. (4)

Here g3 is the coupling of q-particle umklapp processes
and prime indicates that the summation over the spin
indices gives contribution only for terms which contain
phase fields with different spins. The other terms are
forbidden by the Pauli principle. One can easily see from
Eq. (4) that for q = n the leading-order umklapp pro-
cesses modify only the spectrum of the symmetric com-
bination of the boson fields, which means that the charge
excitations acquire a finite energy gap of order g3, while
the spin modes remain gapless. It is more interesting,
as we will see, that if q < n, the leading-order umklapp
scatterings couple the spin and charge modes, and due
to this coupling the whole spectrum becomes gapped —
not only at zero momentum, but at k∗ = 2kF, and integer
multiples of k∗, too.

Considering the analytical predictions it is expected
that the behavior of the system should be determined
by the k∗ = 2kF modes. We have, therefore, studied
the model numerically using the high-precision density-
-matrix renormalization group (DMRG) method [13] for

several system sizes and values of q and n as a function
of U . We have detected and located quantum phase tran-
sition points (QPTs) and determined the spatial charac-
teristics of the ground state using various quantum infor-
mation entropies [14–16]:

sN (l) = −Tr
(
ρN (l) ln ρN (l)

)
, (5)

where a finite block of length l of a long chain of N
sites is considered with the corresponding reduced sub-
system density matrix ρN (l). As has been shown before
[14, 15], anomalies in the entropy functions or in their
derivate signal QPTs, and peaks in the Fourier spec-
trum of sN (l) carry information about the position of
soft modes (for critical models) or the spatial inhomo-
geneity of the ground state (for gapped systems) [16]. In
the latter case the spatial modulation of the ground state
can be a site- or a bond-centered density wave. A site-
-centered density wave would manifest itself in an oscilla-
tion of the entropy of single sites or in the local electron
density. The existence of a bond-centered density wave
can be demonstrated by studying the variation of the
bond energy or the two-site entropy along the chain [15].

We have found that for models with q ≥ n, for finite
systems, the block entropy oscillates with a period deter-
mined by the filling, but all Fourier components except
for q = 0 disappear in the N →∞ limit. Therefore, the
ground state of the system is spatially uniform.

A significantly different behavior has been found for
systems with q < n. The block entropy function sat-
urates beyond some system size [7] for finite U values,
indicating that the corresponding models are fully gap-
ped [17]. In fact, gap opens in the spectrum of all modes
for U > 0 [8]. Even more interestingly, the transla-
tional symmetry of the Hamiltonian is broken and a spa-
tially nonuniform ground state emerges whose periodic-
ity depends on the filling. Since all Fourier components
of the site entropy and local charge density have been
found to vanish for long chains, the ground state is a
bond-centered density wave. Therefore, we have identi-
fied bond-ordered dimerized, trimerized or tetramerized
phases depending on the filling.

With the aim to interpret this result, the model was
further studied analytically. However, starting with the
Hamiltonian given in Eq. (1), we could not find any
method that could reproduce the spatially nonuniform
phases obtained numerically. On the other hand, we
know that in the strong-coupling limit the Hubbard
model is equivalent to the Heisenberg model with an
effective antiferromagnetic exchange, and also that the
one-dimensional Heisenberg model exhibits spin-Peierls
instability. The spin chain dimerizes spontaneously when
the exchange coupling depends on the distance between
the neighbors. If the Hubbard model is extended with
the Heisenberg term, the J coupling might have a simi-
lar effect leading to the spatially nonuniform phases.

In order to analyze the possibility of bond ordering,
we have taken a more general model, the Hubbard–
Heisenberg model [3], which contains antiferromagnetic
nearest-neighbor spin-exchange J , in addition to the
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on-site Coulomb repulsion U . The Hubbard–Heisenberg
Hamiltonian is

H =
N∑

i=1

[
− t

n∑
σ=1

(
c†i,σci+1,σ + h.c.

)

+
U

2

n∑

σ,σ′=1

ni,σni,σ′ + JSiSi+1

]
, (6)

where we use the same notations as in Eq. (1), and Si

is the SU(n) spin operator. Our mean-field analysis was
based on a large-n limit calculations and it was restricted
to one-third-filled system, with n an integer multiple of
3 as the special case of the filling f = p/q, q < n. We
have found that the spatially homogeneous phase is not
stable, the spatial periodicity changes for arbitrary small
positive value of J : it seems that the Hubbard model is
unstable against the antiferromagnetic nearest-neighbor
Heisenberg exchange, independently of the value of the
on-site Coulomb interaction.

3. Conclusions

We conclude that the exchange correlations that are
present in the Hubbard model for any value of U , become
relevant in the intermediate-coupling regime, too, and
they are responsible for the spatial distortion. Our results
also show that these correlations are difficult to treat an-
alytically in that coupling regime where neither the weak-
nor the strong-coupling methods work resonably. There-
fore, in order to take the effects of these processes into
account, it is sensible to add a Heisenberg-like nearest-
-neighbor exchange to the Hamiltonian of the Hubbard
model. The strongest argument for the relevance of a
Heisenberg-like exchange in the Hubbard model would
be a non-perturbative real-space renormalization group
analysis which could be the object of a future work.
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