The Role of the Exchange Interaction in the One-Dimensional \(n \)-Component Hubbard Model

E. Szirmai, Ö. Legeza and J. Sólyom

Research Institute for Solid State Physics and Optics
P.O. Box 49, H-1525 Budapest, Hungary

The commensurate \(p/q \)-filled \(n \)-component Hubbard chain was investigated by bosonization and high-precision density-matrix renormalization-group analysis. It was found that depending on the relation between the number of components \(n \), and the filling parameter \(q \), the system shows metallic or insulating behavior, and for special fillings bond-ordered (dimerized, trimerized, tetramerized etc.) ground state develops in the insulating phase. A mean-field analysis shows that this bond ordering is a direct consequence of the spin-exchange interaction, which plays a crucial role in the one-parameter Hubbard model — not only for infinite Coulomb repulsion, but for intermediate values as well.

PACS numbers: 71.10.Fd

1. Introduction

Recent experimental results in ultracold gases in optical lattices may be simulated by multi-component fermionic systems in which spins can take more than two degrees of freedom [1]. A natural candidate for the description of such systems from the theoretical point of view is the SU(\(n \))-symmetric generalization of the standard SU(2) Hubbard model [2] which has been investigated intensively in the past by both analytic and numerical approaches [1, 3–10]. In fact, this model may mimic strongly correlated electron systems where the orbital degrees of freedom of \(d \) and \(f \) electrons play important role and these extra degrees of freedom are taken into account by considering \(n \)-component fermions.

In this paper we will further analyze the physics of the SU(\(n \)) Hubbard model for commensurate fillings on the basis of our earlier works [6–8]. In Ref. [7] we have studied the occurrence of spatially nonuniform phases for special fillings and for different values of \(n \), and the phase diagram of the model has been established. In the present paper, we will discuss the physics behind the phase diagram, and especially its implications for intermediate values of the Hubbard coupling \(U \).

2. Theory

The Hamiltonian of the model is usually written in the form

\[
\mathcal{H} = \sum_{i=1}^{N} \left[-t \sum_{\sigma=1}^{n} \left(c_{i,\sigma}^\dagger c_{i+1,\sigma} + c_{i+1,\sigma}^\dagger c_{i,\sigma} \right) + \frac{U}{2} \sum_{\sigma,\sigma'=1}^{n} n_{i,\sigma} n_{i,\sigma'} \right],
\]

where \(N \) is the number of sites in the chain. The operator \(c_{i,\sigma}^\dagger \) \((c_{i,\sigma}) \) creates (annihilates) an electron at site \(i \) with spin \(\sigma \), where the spin index is allowed to take \(n \) different values. \(n_{i,\sigma} \) is the particle-number operator, \(t \) is the hopping integral between nearest-neighbor sites, and \(U \) is the strength of the on-site Coulomb repulsion. In what follows \(t \) will be taken as the unit of energy.

It is well known that in the weak-coupling regime the half-filled \(n \)-component Hubbard model is an insulator with gapped charge and spin modes (for \(n > 2 \)), while in the large \(U \) limit the system can be described — at least for even \(n \) — by an effective Heisenberg model [3, 6]. Away from half filling, based on leading-order renormalization group analysis, the higher-order umklapp processes do not give contribution, one can find the Luttinger liquid behavior with gapless bosonic charge and spin modes. However, one can expect that these higher order processes become relevant for commensurate fillings and cannot be neglected. To see their effect, first we analyze how the spectrum of a Luttinger liquid is modified by these processes and then we study the occurrence of phases with spatial inhomogeneity for special fillings.

The well-known one-particle and particle–hole excitation spectrum of the two-component Luttinger liquid [11, 12] can be easily generalized for fermions with \(n \) internal degrees of freedom

\[
E = \sum_{j} \hbar \omega \frac{2\pi}{L} \left(n_{j}^c + n_{j}^v + \Delta_{j}^c + \Delta_{j}^v \right),
\]

where the momentum is quantized in units of \(2\pi/L \), and \(n_{j}^c \) are integers describing the particle–hole type bosonic excitations: the term \(j = c \) describes the excitations of the charge mode which is the symmetric combination of the bosonic phase fields \(\phi(x) \) of the corresponding fermion fields, \(\phi_{c}(x) = \frac{1}{\sqrt{n}} \sum_{\sigma=1}^{n} \phi_{\sigma}(x) \). The terms \(j = ms \) describe the excitations of the \(n - 1 \)
spin modes which are independent antisymmetric combinations of the appropriate boson fields, \(\phi_m(x) = [m(m + 1)]^{-1/2} \sum_{n=1}^{m} \phi_m(x) - m\phi_{m+1}(x) \). In Eq. (2) \(\Delta_j \) corresponds to the one-particle excitations: \(\Delta_j = \frac{1}{\pi \sqrt{K_j}} (J_j \pm \delta N_j / \sqrt{K_j} \right)^2 \), where \(\delta N_j \) is the change in the number of particles, and \(J_j \) describes the current in the \(j \)-th channel generated by processes which break the chiral particle-number or spin conservation. Since the total momentum is given by

\[
P = \hbar k_F J_c + \sum_j \frac{2\pi}{J} \left(n_j^l - n_j^r + \Delta_j^+ - \Delta_j^- \right),
\]

and the charge current \(J_c \) is an even number due to the total particle-number conservation, in the thermo-
dynamic limit soft modes appear not only at zero mo-
mentum but also at even integer multiples of \(k_F = \pi f \)
for filling \(f \).

For commensurate filling the higher-order umklapp
processes are not irrelevant anymore, and they modify
the Luttinger liquid spectrum. In the considered
restricted Hilbert space (with low-energy states), the
higher-order umklapp processes can be described only by
multiparticle scatterings in fermion representation, and
in these processes the number of scattered particles de-

dpends on the filling factor \(f \). Namely, for \(f = p/q \) filling,

exactly \(q \) particles take part in the leading-order multi-

particle umklapp processes. Therefore, due to the Pauli

principle these processes are forbidden for local interac-

tion, if \(q > n \), and the system remains Luttinger liquid.
If, on the other hand, \(q \leq n \), at least for strong interac-

tions these processes are relevant, and their contribution

has to be taken into account. The \(q \)-particle umklapp

processes can be described in the terms of the bosonic

fields as

\[
H_U = g_3 \int dx \sum_{\{\sigma, \gamma\}} \times \cos \left(2 \left(\phi_{\sigma_1}(x) + \ldots + \phi_{\sigma_q}(x) \right) \right).
\]

Here \(g_3 \) is the coupling of \(q \)-particle umklapp processes

and prime indicates that the summation over the spin

indices gives contribution only for terms which contain

phase fields with different spins. The other terms are

forbidden by the Pauli principle. One can easily see from

Eq. (4) that for \(q = n \) the leading-order umklapp

processes modify only the spectrum of the symmetric

combination of the boson fields, which means that the charge

excitations acquire a finite energy gap of order \(g_3 \), while

the spin modes remain gapless. It is more interesting,
as we will see, that if \(q < n \), the leading-order umklapp

scatterings couple the spin and charge modes, and due
to this coupling the whole spectrum becomes gapped —
not only at zero momentum, but at \(k^* = 2k_F \), and integer

multiples of \(k^* \), too.

Considering the analytical predictions it is expected that
the behavior of the system should be determined by

the \(k^* = 2k_F \) modes. We have, therefore, studied
the model numerically using the high-precision density-

matrix renormalization group (DMRG) method [13] for

several system sizes and values of \(q \) and \(n \) as a function

of \(U \). We have detected and located quantum phase trans-

tion points (QPTs) and determined the spatial charac-
teristics of the ground state using various quantum infor-
mation entropies [14–16]:

\[
s_N(l) = -\text{Tr}(\rho_N(l) \ln \rho_N(l)),
\]

where a finite block of length \(l \) of a long chain of \(N \)

sites is considered with the corresponding reduced sub-

system density matrix \(\rho_N(l) \). As has been shown before

[14, 15], anomalies in the entropy functions or in their
derivative sign QPTs, and peaks in the Fourier spectrum

of \(s_N(l) \) carry information about the position of

soft modes (for critical models) or the spatial inhomoge-
nenity of the ground state (for gapped systems) [16]. In

the latter case the spatial modulation of the ground state

can be a site- or a bond-centered density wave. A site-

centered density wave would manifest itself in an oscillat-

ton of the entropy of single sites or in the local electron
density. The existence of a bond-centered density wave

can be demonstrated by studying the variation of the

bond energy or the two-site entropy along the chain [15].

We have found that for models with \(q \geq n \), for finite

systems, the block entropy oscillates with a period deter-

mined by the filling, but all Fourier components except

for \(q = 0 \) disappear in the \(N \to \infty \) limit. Therefore, the

ground state of the system is spatially uniform.

A significantly different behavior has been found for

systems with \(q < n \). The block entropy function oscil-

lates beyond some system size [7] for finite \(U \) values,

indicating that the corresponding models are fully gapped

[17]. In fact, gap opens in the spectrum of all modes

for \(U > 0 \) [8]. Even more interestingly, the translational

symmetry of the Hamiltonian is broken and a spa-
tially nonuniform ground state emerges whose periodic-

icity depends on the filling. Since all Fourier components

of the site entropy and local charge density have been

found to vanish for long chains, the ground state is a

bond-centered density wave. Therefore, we have identi-

fied bond-ordered dimerized, trimerized or tetramerized

phases depending on the filling.

With the aim to interpret this result, the model was

further studied analytically. However, starting with the

Hamiltonian given in Eq. (1), we could not find any

method that could reproduce the spatially nonuniform

phases obtained numerically. On the other hand, we

know that in the strong-coupling limit the Hubbard

model is equivalent to the Heisenberg model with an

effective antiferromagnetic exchange, and also that the

one-dimensional Heisenberg model exhibits spin-Peierls

instability. The spin chain dimerizes spontaneously when

the exchange coupling depends on the distance between

the neighbors. If the Hubbard model is extended with

the Heisenberg term, the \(J \) coupling might have a simi-

lar effect leading to the spatially nonuniform phases.

In order to analyze the possibility of bond ordering,

we have taken a more general model, the Hubbard–

Heisenberg model [3], which contains antiferromagnetic

nearest-neighbor spin-exchange \(J \), in addition to the
on-site Coulomb repulsion U. The Hubbard–Heisenberg Hamiltonian is
\[
\mathcal{H} = \sum_{i=1}^{N} \left[-t \sum_{\sigma=1}^{n} (c_{i,\sigma}^\dagger c_{i+1,\sigma} + h.c.) + \frac{U}{2} \sum_{\sigma,\sigma' = 1}^{n} n_{i,\sigma} n_{i,\sigma'} + J S_i S_{i+1} \right], \quad (6)
\]
where we use the same notations as in Eq. (1), and S_i is the SU(n) spin operator. Our mean-field analysis was based on a large-n limit calculations and it was restricted to one-third-filled system, with n an integer multiple of 3 as the special case of the filling $f = p/q, q < n$. We have found that the spatially homogeneous phase is not stable, the spatial periodicity changes for arbitrary small positive value of J: it seems that the Hubbard model is unstable against the antiferromagnetic nearest-neighbor Heisenberg exchange, independently of the value of the on-site Coulomb interaction.

3. Conclusions

We conclude that the exchange correlations that are present in the Hubbard model for any value of U, become relevant in the intermediate-coupling regime, and they are responsible for the spatial distortion. Our results also show that these correlations are difficult to treat analytically in that coupling regime where neither the weak- nor the strong-coupling methods work resonsably. Therefore, in order to take the effects of these processes into account, it is sensible to add a Heisenberg-like nearest-neighbor exchange to the Hamiltonian of the Hubbard model. The strongest argument for the relevance of a Heisenberg-like exchange in the Hubbard model would be a non-perturbative real-space renormalization group analysis which could be the object of a future work.

Acknowledgments

This research was supported by the Hungarian Research Fund (OTKA) grants No. K 68340, F 046356 and NF 61726 and the János Bolyai Research Fund. The authors acknowledge computational support from Dynaflex Ltd. under grant No. IgB-32.

References