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Magnetic Properties of NpPdSn
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A new compound NpPdSn was prepared and studied by X-ray diffraction, magnetization, heat capacity and
electrical resistivity measurements, performed in the temperature range 2–300 K and under magnetic field up to
14 T. The crystal structure determined by single-crystal X-ray analysis is hexagonal with ZrNiAl-type (space group
P62m). NpPdSn orders antiferromagnetically at 19 K and exhibits a Curie–Weiss behavior with µeff = 2.66 µB

and Θp = −47 K. Bulk properties show temperature variations similar to systems with strong electronic
correlations with a large negative paramagnetic Curie temperature and an enhanced low-temperature specific heat
(γ ≈ 90 mJ/(mol K2)). It suggests that NpPdSn may be classified as a new Np-based antiferromagnetic Kondo
lattice, one of the very few known amidst transuranium-based intermetallics.

PACS numbers: 75.50.Ee, 71.27.+a, 75.30.Mb

1. Introduction

Uranium-based compounds with the UTX composi-
tion, where T is a d-electron transition metal and X
stands for a p-electron element, have attracted much
attention for their large variety of physical behav-
iors, due to the hybridization of uranium 5f electrons
with s, p and/or d electrons of neighboring atoms.
In these ternaries itinerant or localized magnetic mo-
ment, complex magnetic structures and/or semicon-
ducting or semimetallic-like electrical conductivity have
been reported. Moreover, several UTX compounds also
show features characteristic of heavy fermion systems.
Such a behavior was reported, for example, for mag-
netically ordered Kondo lattices such as UPdGa (two
subsequent antiferromagnetic-like transitions at 30 and
62 K [1]), UPdSi (antiferromagnetic-like transitions at
27 and 33 K [2]), UPdGe (antiferromagnetic transition
at 50 K and a ferromagnetic one at 28 K [3, 4]) and
UPdIn (antiferromagnetic ordering below TN = 20 K
with a ferromagnetic component below 7 K [5]). The
uranium stannite, UPdSn, exhibits well localized 5f elec-
trons with a small linear specific heat coefficient (γ ≈
5 mJ/ (mol K2)) [6]. This compound exhibits an anti-
ferromagnetic phase transition at 37 K leading to a mag-
netic structure with orthorhombic symmetry. A second
transition occurs at 25 K, and the magnetic structure be-
comes of monoclinic symmetry [7]. The ordered magnetic
moment on the U site is large (µord ≈ 2 µB) [8].

In the course of our systematic studies on the
magnetic, transport and thermodynamic properties of
transuranium-based AnPd2Sn intermetallics [9–11], we
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have recently focused our attention on the AnPdSn ma-
terials. In this paper we report for the first time about
crystal structure, magnetic and specific heat properties
of NpPdSn.

2. Experimental details

A polycrystalline sample of NpPdSn was prepared by
arc melting the stoichiometric amounts of the elements
in a Zr-gettered pure argon atmosphere. The sample was
examined by X-ray single crystal and powder diffraction
methods. Small single crystals were isolated from the

Fig. 1. Crystal structure of NpPdSn.

crushed ingot and used for the data collection on a four-
-circle X-ray diffractometer. The refined crystal struc-
ture was shown to be hexagonal with ZrNiAl-type (space
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group P62m) and with lattice parameters a = 7.5076 Å
and c = 4.0954 Å. A sketch of the crystal structure of
NpPdSn is shown in Fig. 1.

Magnetization measurements were carried out in the
temperature range 2–300 K and in magnetic fields up
to 7 T using a SQUID magnetometer (Quantum Design
MPMS-7). The heat capacity (relaxation method) was
measured from 2 to 300 K employing a Quantum De-
sign PPMS-14 system. Due to the radiotoxicity of nep-
tunium, all operations of preparation and encapsulation
have been achieved in glove boxes under inert atmosphere
(N2). Moreover, all experimental studies were made us-
ing special encapsulation systems due to the contamina-
tion risks.

3. Results and discussion

The temperature dependence of the inverse magnetic
susceptibility of NpPdSn measured in an applied mag-
netic field of 7 T is shown in Fig. 2. At low temperature
a distinct minimum in the χ−1(T ) curve manifests the
onset of antiferromagnetic ordering below the Néel tem-
perature TN = 19 K.

Fig. 2. Temperature dependence of the inverse mag-
netic susceptibility of NpPdSn measured in a magnetic
field µ0H = 7 T. The solid line is a Curie–Weiss fit.
Inset: magnetization versus magnetic field taken at 10
and 25 K.

Above the magnetic transition, the inverse magnetic
susceptibility of NpPdSn follows a Curie–Weiss law:

χ(T ) =
Nµ2

eff

3kB(T −Θp)
(1)

with the effective magnetic moment µeff = 2.66 µB and
the paramagnetic Curie temperature Θp = −47 K. The
experimental value of µeff is similar to the free Np3+

ion value expected for the Russell–Saunders coupling
(2.68 µB). It indicates the presence of a well localized
magnetic moment on the Np ions. The absolute value
of Θp is much larger compared to the Néel temperature
as usually found in systems with strong Kondo interac-
tions. As shown in the inset of Fig. 2, the magnetization

measured in the ordered state is proportional to the ap-
plied magnetic field with no sign of any hysteresis effect
or metamagnetic-like transition up to 7 T.

Fig. 3. Temperature variation of the specific heat of
NpPdSn. The inset shows the low-temperature data in
the form Cp/T vs. T 2. The solid lines mark a straight
line behavior.

Figure 3 shows the temperature dependence of the spe-
cific heat of NpPdSn. At room temperature, Cp ap-
proaches a value expected from the Dulong–Petit law,
i.e. Cp = 3nR = 74.8 J/(mol K), where n is the number
of atoms per molecule (in the case of NpPdSn n = 3) and
R is the gas constant. The magnetic phase transition at
TN = 19 K manifests itself as a small λ-type anomaly in
Cp(T ). This peak is hardly affected by an applied mag-
netic field. At 14 T, the maximum in Cp/T shifts only
faintly towards lower temperatures and insignificantly de-
creases in magnitude. The observed behavior is very sim-
ilar to that found before in NpPd2Sn [9]. The low tem-
perature electronic contribution to the specific heat of
NpPdSn is strongly enhanced. The Cp/T ratio extrapo-
lated to T = 0 K from the regions above and below TN

is as large as 380 mJ/(mol K−2) and 90 mJ/(mol K−2),
respectively (see inset in Fig. 3). These values are com-
parable with the Sommerfeld coefficients reported for
UPdSb and UPdIn, which were 62 mJ/(mol K−2) [12]
and 280 mJ/(mol K−2) [13], respectively.

4. Summary

The new Np-based ternary compound NpPdSn was
synthesized and studied by X-ray diffraction, magnetiza-
tion and heat capacity measurements, performed in the
temperature range 2–300 K and in magnetic field up to
14 T. The compound crystallizes with hexagonal struc-
ture of ZrNiAl-type (e.g. P62m) with the lattice parame-
ters: a = 7.5076 Å and c = 4.0954 Å. The magnetic mea-
surements revealed that NpPdSn orders antiferromag-
netically at 19 K. The enhanced low-temperature linear
specific heat coefficient points to the presence of heavy-
-quasiparticles in the antiferromagnetic state. It suggests
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that the compound may be classified as a new Np-based
antiferromagnetic Kondo lattice, one of the very few
known amidst transuranium-based intermetallics. How-
ever, before drawing any firm conclusion about the elec-
tronic ground state in NpPdSn future experimental stud-
ies are required. Some of them are presently underway.

Acknowledgments
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P. Javorský, E. Colineau, F. Wastin, G.H. Lander,
Physica B 359-361, 1102 (2005).

[10] K. Gofryk, D. Kaczorowski, E. Colineau, F. Wastin,
R. Jardin, J.-C. Griveau, N. Magnani, J. Rebizant,
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