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The effect of frustration in various localized and itinerant vanadium oxide compounds is discussed within next
nearest neighbors Heisenberg and spin fluctuation models, respectively. In the localized moment case the S = 1/2
J1−J2-model on a square lattice exhibits a rich phase diagram with magnetic as well as exotic hidden order phases
due to the interplay of frustration and quantum fluctuations. Their signatures in the high field magnetization
and in magnetocaloric quantities are surveyed. The possible quantum phase transitions are discussed and applied
to layered vanadium oxides of the type AA′VO(PO4)2 where A, A′ = Pb, Zn, Sr, Ba, Cd. In itinerant electron
systems magnetic frustration may emerge as a result of electron correlations on a geometrically frustrated lattice.
This mechanism causes enhanced spin fluctuations in a large region of momentum space and therefore can lead
to a heavy fermion state at low temperatures as in the 3d spinel compound LiV2O4. The evidence from neutron
scattering and NMR experiments is discussed within self-consistent renormalization theory based on local density
approximation band structure calculations.

PACS numbers: 75.10.Jm, 75.10.Lp

1. Introduction

In magnetically frustrated compounds the pairwise ex-
change interactions of spins cannot all be minimized si-
multaneously in any microscopic moment configuration.
This may arise already in the case of nearest neigh-
bor (n.n.) interactions when the lattice has the prop-
erty of geometric frustration like, e.g. trigonal, Kagomé,
checkerboard or pyrochlore type lattices [1–3]. In this
case the fundamental building blocks like triangles, pla-
quettes or tetrahedrons share common sites such that
there is no unique state which minimizes all bond ener-
gies to nearest neighbor sites. Consequently there will be
many states which have approximately equally low ener-
gies, i.e., frustration leads to a large degeneracy of low ly-
ing states. This entails large quantum fluctuations which
may prevent the appearance of magnetic order. Frus-
tration can also arise through the competition of longer
range interactions even in simple structures like the 2D
square lattice. At low temperatures there are basically
two alternatives: quantum fluctuations may select one of
the degenerate states as the true ordered state (“order by
disorder”) or they may lead to an ordered quantum phase
with a new type of order parameter that is of the “hid-
den order” type, i.e. it does not display a macroscopic
modulation of spin density.

The concept and meaning of frustration is much harder
to identify in itinerant electron systems. Let us consider
non-interacting electrons described by a n.n. tight bind-
ing Hamiltonian on a pyrochlore lattice, or its 2D projec-
tion, the checkerboard lattice. The kinetic energy alone

cannot be “frustrated” since the hopping element (t) is
always the same for each n.n. bond. Frustration emerges
when one includes electron correlations, e.g. an on-site
Coulomb repulsion U or an inter-site repulsion V . In
the former case and in the limit U À t for a half-filled
band local moments appear and the exchange energies
(J = 4t2/U) of corner-sharing exchange bonds will be
frustrated due to the lattice geometry. This property
emerges gradually as U/t increases. For moderate cor-
relations (U >∼ 2zt, z = coordination) and away from
half-filling it is better to look at the staggered suscep-
tibility. Geometric frustration may lead to a “flat” dis-
persion and therefore the interacting susceptibility will
be enhanced over a very large region in q-space. This
can be interpreted as the signature of frustration in an
itinerant system. One famous example is the metallic
spinel LiV2O4. The associated softening of spin fluctua-
tion modes in a large part of the Brillouin zone leads to
large quasiparticle mass enhancement and therefore to
large specific heat γ-coefficient and susceptibility at low
temperatures. Thus geometric frustration may lead to a
novel type of (3d-) heavy fermion state in this compound
which is not due to the usual Anderson- or Kondo lattice
mechanism.

In this article we first discuss the effects of frustration
in the local moment J1−J2 model [4–7] on the 2D square
lattice, using both exact diagonalization with finite tem-
perature Lanczos method (FTLM) for finite clusters as
well as analytical spin wave methods. In particular, the
high field magnetization and magnetocaloric effect in the
various phases are investigated (Sect. 2) which are rele-

(53)



54 P. Thalmeier et al.

vant for a class of layered vanadium oxide compounds.
A theory for the itinerant frustrated 3d-heavy fermion
compound LiV2O4 [8] will be discussed in Sect. 3. It is
based on ab initio local density approximation (LDA) cal-
culations and the self-consistent renormalization (SCR)
approach [9, 10]. It will be used to explain inelastic neu-
tron scattering results which give a direct insight into the
origin of frustration in this compound. Finally, Sect. 4
gives a summary.

2. Frustrated J1−J2 magnetism
on the square lattice

The idea of a possible resonating valence band (RVB)
state in the cuprates has led to a search for quantum spin
liquids in 2D antiferromagnetic S = 1/2 compounds. In
reality most of them exhibit an ordered state with either
magnetic or exotic hidden order. In particular the n.n.
Heisenberg model on a square lattice has the Néel anti-
ferromagnetic (AF) ground state. A more general case is
the 2D J1−J2 model having a control parameter J2/J1

which may destabilize the Néel-AF state of the J2 = 0
Heisenberg model. This leads to various other magnet-
ically ordered or hidden order states comprising a rich
phase diagram in the J1−J2 plane. They also have an
interesting behavior in an external field depending on the
amount of frustration controled by J2/J1. Recently vari-
ous layered vanadium compounds have been found which
correspond well to the J1−J2 model. They are of the
type Li2VOXO4 (X = Si, Ge) [11, 12] and AA′VO(PO4)2
(A, A′ = Pb, Zn, Sr, Ba) [13, 14] and consist of V-oxide
pyramid layers containing V4+ ions with S = 1/2. From
the analysis of zero field thermodynamic results the frus-
tration ratio J2/J1 may be obtained, however an ambi-
guity remains [4]. A further method of diagnosis is the
high field behavior discussed in Sect. 2.2.

2.1. The J1−J2 model and its phases

The 2D square lattice J1−J2 model in a magnetic field
H is given by

H = J1

∑

〈ij〉1
Si · Sj + J2

∑

〈ij〉2
Si · Sj − h

∑

i

Sz
i . (1)

Here J1 and J2 are two exchange constants between near-
est and next nearest neighbors (n.n.n.) on a square lat-
tice, respectively. These parameters are defined per ex-
change bond and h = gµBH (g = gyromagnetic ratio,
µB = Bohr magneton). The phase diagram is prefer-
ably characterized by introducing equivalent parameters
Jc = (J2

1 + J2
2 )

1
2 and φ = tan−1(J2/J1). The angle φ

determines the degree of magnetic frustration.
This model has three possible classical magnetic

ground states (see Fig. 1a) depending on φ: ferromag-
net (FM), Néel antiferromagnet (NAF) and collinear
antiferromagnet (CAF) [4]. The influence of exchange
frustration leading to enhanced quantum fluctuations is
strongest at the classical phase boundaries where the
CAF phase joins the NAF (J2/J1 = 0.5, φ = −0.15π)

Fig. 1. (a) Phases of the spin-1/2 2D square lattice
J1−J2 model as function of φ or J2/J1. The FM,
NAF and CAF order (arrows) have wave vectors Q =
(0, 0), (1,1) and (1,0) or (0,1) (in units of π/a), respec-
tively. The gray sectors (J2/J1 values indicated outside)
represent stacked-dimer phase (right sector) and spin-
-nematic phase (left sector). Dotted line corresponds to
experimental ΘCW = (J1+J2)/kB for Zn compound [14]
with two possible phases at φ+ (CAF) and φ− (NAF).
Full circles correspond to CAF phases determined by
neutron scattering [16]. (b) Here h = hs(φ) for every φ,
i.e. CV and Γmc are plotted along the curve in the upper
inset of Fig. 2, using a fixed T = 0.2Jc/kB. The filled
circles denote the normalized values Γmc/(T/H), corre-
sponding to the enhancement relative to a paramagnet
(from Ref. [5]).

or FM (J2/J1 = −0.5, φ = 0.85π) phases. In fact, in
these regions they destroy long-range magnetic order [4]
and establish two new ordered states, namely a gapped
columnar dimer state at the CAF/NAF boundary and a
gapless spin nematic state at the CAF/FM boundary [6]
as shown by the gray sectors in Fig. 1a.

2.2. Thermodynamics and high field properties
of the J1−J2 model

For a compound described by this model it is most im-
portant to determine the energy scale Jc and especially
its frustration parameter φ. For a J1−J2 compound the
energy scale Jc = (J2

1 + J2
2 )

1
2 is obtained from the high

temperature specific heat CV (T ) or the temperature Tχ

where the susceptibility χ(T ) is at maximum. Further-
more the high-temperature expansion (T À Jc) yields
the Curie–Weiss constant ΘCW = J1 + J2. We have

χ(T ) =
NAµ0g

2µ2
B

NkB

1
T

(〈(
Stot

z

)2
〉
− 〈

Stot
z

〉2
)

, (2)
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CV (T ) =
NA

NkB

1
T 2

(〈
H2

〉− 〈H〉2
)

, (3)

here 〈. . .〉 is the thermal average, Stot
z is the z compo-

nent of the total spin of the system, and N , NA are
the number of sites and Avogadro constant respectively,
µ0 is the magnetic permeability and kB — Boltzmann’s
constant. At zero field 〈Stot

z 〉 = 0. Equations (2), (3)
are obtained for finite clusters using the FTLM method
(they are also valid in finite field). The numerically ob-
tained maximum position Tχ of χ(T ) may be combined
with ΘCW = J1 + J2 to the quantity ΘCW/Tχ for com-
parison with experiment. It was shown that no unique
solution exists [4] but two possible frustration angles φ−
(NAF region) and φ+ (CAF region) are compatible with
experimental results for each compound (dotted line in
Fig. 1a). One way to distinguish both possibilities is
the magnetic structure factor S(q) obtained in neutron
scattering. From the wave vector of the scattering peak
one may decide between NAF (Q = (π, π)) and CAF
(Q = (π, 0), (0, π)) (Fig. 1a).

2.3. Magnetization and saturation fields

Investigation of the uniform magnetization leads to
further understanding of the possible ground states of
the model [7]. It may be obtained both from numerical
Lanczos calculations as well as analytical spin wave ex-
pansion starting from the three ordered magnetic phases.
In the latter approach a Holstein–Primakoff (HP) trans-
formation leads to a harmonic spin wave Hamiltonian

H = NE0 + NEZP +
∑

k

εk(h)α†kαk, (4)

here α†k are magnon operators creating spin waves with
dispersion εk(h). We have, using expressions given in
Appendix

εk(h) = S(ak + ck)
1
2 (ak + ck cos θc)

1
2 , (5)

where θc/2 is the field-induced canting angle of sublattice
moments (counted from the field direction) with θc = π

2
for h = 0 and θc = 0 for h ≥ hs where hs(Jc, φ) is the sat-
uration field (see upper inset of Fig. 2). For h < hs min-
imization of the mean field energy E0(h, θc) leads to the
“classical” canting angle cos θc

2 = h/hs with hs = 8J1S
(NAF) and hs = S(4J1 + 8J2) (CAF) which results in a
linear magnetization m0 = S(h/hs). In Eq. (4) EZP is
the energy of zero point fluctuations per site

EZP =
1

2N

∑

k

[εk(h)− Sak] . (6)

The zero point energy connected with spin waves will
lead to quantum corrections in the magnetization which
modify the linear classical behavior according to mZP =
−∂EZP(h)/∂h which is determined by the dispersion
εk(h). At the classical phase boundaries CAF/NAF and
CAF/FM the dispersion becomes anomalous [4]. It is
constant (zero for h ≤ hs) along lines in the Brillouin
zone (BZ) connecting the two competing ordering vec-
tors Q at the phase boundary [4]. The expression for the
magnetization including quantum corrections up to order

Fig. 2. (a) Magnetization curves µ/µB = gm (= m/S)
for various φ in the AF or disordered sectors (each
curve offset by 0.2). Symbols: T = 0 Lanczos re-
sults for N = 16 (squares), 20 (diamonds), 24 (dots,
circles) size clusters using the Bonner–Fisher construc-
tion [15]. Lines: first order spin wave calculations.
φ/π = 0.75, –0.21 correspond to the possible CAF or
NAF values of the Sr compound. Magnetization curves
strongly differ in the extent of nonlinear deviation from
the classical curve which corresponds to φ/π = −0.5.
Deep inside CAF or NAF regions agreement of spin
wave and Lanczos calculations is good. The values
φ/π = 0.75, 0.17 are nearby or within the nonmag-
netic sectors. Close to the CAF/FM boundary the first
order spin wave results become unstable at very low
fields. At the CAF/NAF boundary the numerical data
exhibit a plateau with m/S = µ/µB = 0.5. Lower in-
set shows the position of plotted φ values in the phase
diagram. Upper inset shows the saturation field as func-
tion of φ (hs ≡ gµBHsat) (from Ref. [7]). (b) Nonlinear
magnetization curves both from experiments and ED
(φ/π = 0.76) for the BaCd-compound which is closest
to the spin nematic sector in Fig. 1a.

(1/S) is given by [7]:

m = S
h

hs

[
1− 1

hs

1
N

∑

k

ck

(
ak + ck

ak + ck cos θc

) 1
2
]

, (7)

where on the right hand side the classical value of θc

with cos(θc/2) = h/hs has to be used. Because hs ∼ S
the second term in Eq. (7) is formally a 1/S correction
to the linear classical term m0 = S(h/hs). It may be
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expected that these corrections depend on the degree of
frustration measured by φ. In the strongly frustrated
regime around the classical phase boundaries the disper-
sion becomes flat along lines in the BZ, thus dramatically
increasing the phase space for quantum fluctuations lead-
ing to strong nonlinear corrections for the magnetization
(Fig. 2). Within the gray sectors magnetic order breaks
down and quantum fluctuations stabilize spin nematic
(Fig. 2a) [6] and stacked dimer (Fig. 2b) hidden order
parameters.

2.4. Magnetocaloric properties

Further insight into the quantum phases of the J1−J2

model and its high-field behavior may be gained from its
magnetocaloric properties [17]. It is a convenient method
to determine precisely the saturation field. In practice,
the magnetization will be rounded at hs whereas the mag-
netocaloric coefficient (the adiabatic cooling rate) has a
sharp anomaly from which hs may be obtained. The
magnetocaloric coefficient Γmc is defined as the rate of
adiabatic temperature change with external field

Γmc ≡
(

∂T

∂H

)

S

= − T

CV

(
∂S

∂H

)

T

= − T

CV

(
∂m

∂T

)

H

. (8)

In a paramagnetic system one has Γ 0
mc = T/H due to the

scaling behavior of the free energy. We therefore define
Γ̂mc = Γmc/Γ 0

mc as the magnetocaloric enhancement due
to spin interaction effects. For the J1−J2 model Γmc may
be again calculated numerically for finite clusters using
the cumulant expression

Γmc ≡
(

∂T

∂H

)

S

= −gµBT
〈HStot

z 〉 − 〈H〉 〈Stot
z 〉

〈H2〉 − 〈H〉2 . (9)

The magnetocaloric enhancement ratio in FTLM and
spin wave approximation (using the last expression in
Eq. (8)) exhibit qualitatively similar features: a strong
upturn and a positive peak just above the saturation field
hs and for T ¿ Jc a negative coefficient immediately be-
low hs [5]. It is instructive to consider the dependence of
Γ̂mc(h = hs; φ) on the frustration angle, keeping the field
at saturation level where the maximum of Γmc occurs.
Surprisingly, the maximum enhancement of the magne-
tocaloric effect (Fig. 1b) occurs in the stable AF regions
and not at the classical phase boundaries CAF/NAF
and CAF/FM where the quantum phases appear due to
strong frustration. In these regions a large degeneracy of
low lying states (signified by the flat spin wave disper-
sion along lines in the BZ) should lead to a strong field
dependence of the entropy and, according to Eq. (8) to
a large Γ̂mc.

However, let us note that the specific heat CV occurs
in the denominator of Eq. (8). It also shows a strong
enhancement in the quantum phase regions (φ ≈ 0.15π,
φ ≈ 0.85π), this overcompensates the increase in the nu-
merator in Eq. (8). Therefore, the magnetocaloric en-
hancement Γ̂mc is only moderate in these regions while

its maxima occur in the middle of the NAF or CAF phase
sectors in Fig. 1b. The measurement of Γmc(h) should
be an excellent method to determine the saturation field
hs in the J1−J2 compounds. Their absolute values for
the known layered V-oxides are ranged between 5 and
25 T [5].

3. Itinerant frustrated heavy fermion
compound LiV2O4

The metallic spinel compound LiV2O4 is the first 3d-
heavy electron system discovered [8]. Below 30 K a large
specific heat and the Pauli susceptibility enhancement
appears, achieving γ = C/T = 0.4 J/(mol K2) for the
former at the lowest temperatures. Many proposals to ex-
plain this behavior have been made, including traditional
Kondo-like scenarios. A special feature of the spinels
and therefore of LiV2O4 is the fact that V atoms re-
side on a pyrochlore lattice, their average electron count
is nd = 1.5 per V. In a simple tight binding picture
this corresponds to quarter-filling (in the hole picture) of
d-bands, i.e. the system is far from the localized Mott
limit. The exchange-correlation effects, however, still ex-
ist which may lead to the development of pronounced
short range spin correlations in the paramagnetic metallic
state of LiV2O4. This approach was developed in Ref. [9]
within random phase approximation (RPA) spin fluctua-
tion theory based on ab initio LDA electronic structure.

3.1. Electronic structure and spin susceptibility

The pyrochlore lattice has four atoms per unit cell.
A next neighbor tight binding model for a single orbital
[18] leads to four bands where the upper twofold degen-
erate band is completely flat. The real band structure of
LiV2O4 keeps a resemblance to this simple model with a
large DOS peak on top. However, the Fermi level is far
below the top and this peak does not directly play a role
for the enhanced γ-value. Nevertheless, the flat upper
band is indirectly important within the spin fluctuation
mechanism of mass enhancement. For this model one
needs to calculate the dynamic and momentum depen-
dent spin susceptibility.

The result of this calculation [9] for various subcriti-
cal exchange strengths is shown in Fig. 3 for the [111]-
-direction in momentum space. Together with results for
[100] and [110] it shows that surprisingly the susceptibil-
ity is enhanced by approximately the same factor in a
nearly spherical region with a radius Qc ≈ 0.6 Å−1 and
a finite thickness δQ ≈ 0.45 Å−1 in momentum space.
This is the signature of frustration for itinerant spin fluc-
tuations. Since the static χ(Q) ∼ χ(Qc) is almost de-
generate in this shell it means that the system, although
close to a magnetic instability, has no obvious way to
select an ordering wave vector. As a consequence, the
dynamical susceptibility will show a slowing down (shift-
ing the spectral function weight to very low energies) in
the whole critical shell in the BZ. Therefore, there is a
large phase space of low energy spin fluctuations which
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Fig. 3. (a) Static spin susceptibility χ(Q, 0) along [111]
direction for different values of local exchange coupling
constant K < Kc (K = 0.45, 0.40, 0.30 from top to bot-
tom). The critical exchange coupling is Kc = 0.49 eV
and 2π/a ≈ 0.76 Å−1 (from Ref. [9]). (b) Static suscep-
tibilities at q = Qc (full circles) and q = 0 (open circles)
as functions of temperature observed in INS and mag-
netic measurements on LiV2O4, respectively. The solid
line is a fit to χ(Qc, T ) using the self-consistent solution
of yQc(T ) (from Ref. [10]).

can renormalize the quasiparticle mass. This situation
is quite different from non-frustrated lattices where the
enhancement of the interacting susceptibility is usually
sharply peaked around the incipient magnetic ordering
vector, providing only a small phase space and moder-
ate quasiparticle mass enhancement through spin fluctu-
ations.

3.2. Mass enhancement and inelastic neutron scattering

When Q is located within the critical shell the dynam-
ical susceptibility describing low energy spin fluctuations
may be approximately written as (Q = |Q|)

Imχ(Q,ω) ' zQχ(Q)ω/Γ (Q), (10)
where Γ (Q) and zQ < 1 are their energy width and
weight, respectively. Since χ(Q) is much enhanced
and Γ (Q) small in the critical shell the spectral func-
tion around Qc is strongly peaked at low energies in
agreement with inelastic neutron scattering (INS) results
[19–21]. The conduction electrons are dressed with these
low energy bosonic excitations leading to a large spin fluc-
tuation specific heat γsf = Csf/T below 60 K as given
by

γsf =
k2
Bπ

N

∑
q

z(q)
~Γ (q)

. (11)

Since Γ (q) is small in the whole critical shell around
|q| = Qc this may lead to a large γsf . The absolute
scale of the spin fluctuation width, Γ is estimated to fall
between the limits 0.5 eV < Γ < 1.5 meV with a corre-
sponding 300 > γsf > 100 in units of mJ/(mol K2). This
result shows that slow spin fluctuations over extended
momentum region, caused by the effect of frustration,
may explain the size of the large γ value in LiV2O4 and
its heavy-fermion character.

3.3. Mode–mode coupling effects
At larger temperatures the spin fluctuation modes of

different q couple with each other leading to a transfer
of spectral weight from the critical region to low momen-
tum region. Experimentally, it was observed that above
60 K the susceptibility enhancement in the critical shell
around q = Qc vanishes and becomes equal to the value
at q = 0. The effect of mode coupling on the static sus-
ceptibility may be described within Moriya’s SCR theory
[22] according to

χ(q, T )−1 = χ(q, 0)−1

+F̄Qc

∫ ∞

0

dω

2π

1
eω/T − 1

1
N

∑

q′
Imχ(q′, ω, T ). (12)

Here F̄Qc is a mode–mode coupling constant for the criti-
cal shell. The reduced inverse susceptibility may be writ-
ten as y(Qc, T ) = 1

2TAχQc (T ) where TA ≈ 220 K is a scale
parameter. It is obtained from numerical solution of the
SCR integral equation derived from Eq. (12) [23]. The
resulting temperature dependence of the critical suscepti-
bility χQc(T ) together with corresponding experimental
results and those of q = 0 are shown in Fig. 3b. It clearly
demonstrates that the critical enhancement of χQc(T ) is
rapidly reduced with temperature and approaches that of
the FM point q = 0. Since the ratio of scattering inten-
sities at q = Qc and q = 0 is proportional to the square
of the susceptibilities, Fig. 3b implies that the critical
scattering intensity at Qc is reduced by almost a factor
16 when temperature increases to 60 K. Recently it was
shown [23] that SCR theory can also explain the T - and
p-dependence of NMR relaxation rate in LiV2O4.

4. Summary

A class of layered vanadium oxides are realizations of
the 2D J1−J2 model. They are all lying in the CAF sec-
tor of the phase diagram (with the possible exception of
the Zn-compound). Of particular interest are those close
to the spin nematic hidden order phase like the BaCd-
-compound (Fig. 1a). In this case anomalous nonlinear
magnetization due to pronounced quantum fluctuations
appear indicating the instability of magnetic order and
closeness to nonmagnetic (spin nematic) order (Fig. 2).
The enhancement of magnetocaloric cooling rate is a use-
ful method to determine the saturation field. It is largest
within the stable magnetic sectors (Fig. 1b).
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It has been proposed that the intriguing 3d-heavy
fermion compound LiV2O4 is a frustrated metal close to a
magnetic instability. This explains naturally the momen-
tum and temperature dependence of neutron scattering
results (Fig. 3b). The associated slowing down of low
lying spin fluctuations in conjunction with the large in-
stability region in q-space due to frustration effects was
found to explain the quasiparticle mass enhancement.

Appendix

The sublattice coupling energies ak, bk and ck appear-
ing in Sect. 2.3 are given by

(NAF): ak = 4[J1 − J2(1− γ̄k)],

ck = −bk = 4J1γk,

(CAF): ak = 2(2J2 + J1γy),

ck = −bk = 2(J1 + 2J2γy)γx (13)
for the two AF phases. Here the momentum structure
factors are defined by γk = 1

2 (cos kx + cos ky), γ̄k =
cos kx cos ky, γx = cos kx and γy = cos ky.
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