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The Rayleigh wave propagation problem in the elastic halfspace — vis-

coelastic layer interface was analysed in the paper. The problem was formu-

lated in the Fourier–Laplace space using the Biot viscoelastic solid model.

The characteristic equation has taken the Rayleigh equation form with cor-

rection term describing viscoelastic layer properties influence on the wave

velocity. The approach presented here seems to be useful for surface acoustic

waves gas sensors modelling because many chemisensitive coatings applied

to the sensors exhibit viscoelastic properties.

PACS numbers: 43.35.Pt, 68.35.Iv, 43.20.Mv, 46.35.+z

1. Introduction

There are several papers describing the different approaches to solution of
the Rayleigh wave propagation problem in the elastic halfspace — layer interface
(e.g. [1–6]). The main reason of the interest is that such descriptions are impor-
tant from different technologies, and especially from surface acoustic wave (SAW)
sensors technology point of view. Unfortunately, the papers usually ignore the
viscoelastic properties of the layer or take it into consideration by introducing to
the equations complex propagation constant. The approaches, although formally
right, usually do not allow to predict the Rayleigh wave velocity change under
influence of the viscoelastic layer properties variation, during particle sorption, for
instance. It is well known that the existence and value of the influence decides on
the most important SAW sensors properties like sensitivity or minimal detectable
concentration of sensing particles. Actually, the most of coatings useful to the
SAW sensors constructing are polymers. Such materials exhibit strong both geo-
metrical and material properties variations during specific particles sorption and
solvatation. Although the changes of the properties may be calculated but the
polymer layer influence on the Rayleigh wave velocity was still not described in
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the satisfactory way. The approach presented here seems to fill this gap. The prop-
erties of the layer were described in the paper by time dependent Lamé constants
using the Biot viscoelastic solid model with Maxwellian relaxation time.

2. Problem formulation

Let us consider the viscoelastic layer at the elastic halfspace with thickness
h and introduce the Cartesian coordinates, the x3 axis is directed into the depth
of the substrate (Fig. 1).

The displacements in the substrate and the layer was described using well
known potential approach [1]:

u = gradφ + rotψ, (1)
where φ and ψ are scalar and vector potentials, respectively. For unambiguity
the condition divψ = 0 must be additionally satisfied. It is valid for the Rayleigh
wave when ∂

∂x2
≡ 0.

Fig. 1. System under consideration. Values ρ, µ and λ described density and the Lamé

constants for the layer ◦1 and substrate ◦2, respectively.

The homogeneous wave equations for the potentials in the layer take the
form

ρ◦1 ∂2φ◦1
∂t2

−
(
λ◦1(t) + 2µ◦1(t)) ∗ ∇2φ◦1 = 0, (2)

ρ◦1 ∂2ψ◦1
∂t2

− µ◦1(t) ∗ ∇2ψ◦1 = 0, (3)

where ∗ means the convolution operation and

λ◦1(t) = λ0δ(t− τ)− λ◦1
τ

exp
(
− t

τ

)
, (4)

µ◦1(t) = µ0δ(t− τ)− µ◦1
τ

exp
(
− t

τ

)
. (5)

The µ0 and λ0 are instantaneous Lamé constants for the layer, τ — vis-
coelastic solid Maxwellian relaxation time. It is assumed that the relaxation times
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for both Lamé constants are the same. The validity of such assumption was em-
pirically proved for a great deal of amorphic polymer layers.

In the elastic substrate case the wave equations take the following form:

ρ◦2 ∂2φ◦2
∂t2

−
(
λ◦2 + 2µ◦2)∇2φ◦2 = 0, (6)

ρ◦2 ∂2ψ◦2
∂t2

− µ◦2∇2ψ◦2 = 0. (7)

After the Laplace and Fourier transformations the potentials for the layer take the
form

φ̂
◦1
(x3; α; s) = A◦1 exp(−γ◦11 x3) + B◦1 exp(−γ◦11 (2h− x3)), (8)

ψ̂
◦1
2 (x3;α; s) = C◦12 exp(−γ◦12 x3) + D◦12 exp(−γ◦12 (2h− x3)), (9)

where γ◦11 =
√

s2ρ◦1
λ◦1(s)+2µ◦1(s) + α2, γ◦12 =

√
s2ρ◦1

µ◦1(s)+α2
+ α2, α and s are the Fourier

and Laplace transformations parameters, respectively.
For the substrate

φ̂
◦2
(x3; α; s) = A◦2 exp(−γ◦11 x3), (10)

ψ̂
◦2
2 (x3;α; s) = C◦22 exp(−γ◦12 x3), (11)

where γ◦21 =
√

s2ρ◦2
λ◦2+2µ◦2 + α2, and γ◦22 =

√
s2ρ◦2
µ◦2 + α2.

Inserting Eqs. (8)÷(11) into the (1) the displacements in the layer obtain
the form

µ̂
◦1
1 = iα

(
A
◦1

exp(−γ◦11 x3) + B
◦1

exp(−γ◦11 (2h− x3))
)

+γ◦12 C
◦1
2 exp(−γ◦12 x3)− γ◦12 D

◦1
2 exp(−γ◦12 (2h− x3)), (12)

µ̂
◦1
3 = −γ◦11 A

◦1
exp(−γ◦11 x3) + γ◦11 B

◦1
exp(−γ◦11 (2h− x3))

+iα
(

C
◦1
2 exp(−γ◦12 x3) + D

◦1
2 exp(−γ◦12 (2h− x3))

)
(13)

and in the substrate

µ̂
◦2
1 = iαA◦2 exp(−γ◦21 x3) + γ◦22 C

◦2
2 exp(−γ◦22 x3), (14)

µ̂
◦2
3 = −γ◦21 A

◦2
exp(−γ◦21 x3) + iαC◦22 exp(−γ◦22 x3). (15)

Using the relation for deformation tensor ε◦1◦2ik = 1
2

(
u◦1◦2i,k + u◦1◦2k,i

)
and the Hooke

law, one can obtain the stresses according to the relation

σ◦1◦2ij = λ◦1◦2 ¯ trεδij + 2u◦1◦2 ¯ εij , (16)
where sign ¯ means the convolution in the viscoelastic and an ordinary multipli-
cation for the elastic case. Inserting (12) ÷ (15) into the deformation formula and
next into the (16) one can obtain the following formulae for the stresses
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σ̂
◦1
13 = σ̂

◦1
31 = 2iαγ◦11 µ◦1

[
−A
◦1

exp(−γ◦11 x3) + B
◦1

exp(−γ◦11 (2h− x3))
]

−µ◦1
{[

α2 − (γ◦12 )2
] [

C
◦1
2 exp(−γ◦12 x3) + D

◦1
2 exp(−γ◦12 (2h− x3))

]}
, (17)

σ̂
◦1
33 = −λ

◦1
α2

[
A
◦1

exp(−γ◦11 x3) + B
◦1

exp(−γ◦11 (2h− x3))
]

+
(

λ
◦1

+ 2µ◦1
) (

γ◦11
)2

[
A
◦1

exp(−γ◦11 x3) + B
◦1

exp(−γ◦11 (2h− x3))
]

+2iαγ◦12 µ◦1
[
−C
◦1
2 exp(−γ◦12 x3) + D

◦1
2 exp(−γ◦12 (2h− x3))

]
, (18)

σ̂
◦2
13 = σ̂

◦2
31 = −2iαµ◦2γ◦21 A◦2 exp(−γ◦21 x3)

−µ◦2 [
α2 + (γ◦22 )2

]
C◦22 exp(−γ◦22 x3), (19)

σ̂
◦2
33 =

[
−λ◦2α2 + (λ◦2 + 2µ◦2)(γ◦21 )2

]
A◦2 exp(−γ◦21 x3)

−2iαµ◦2 (
γ◦22 C◦22 exp(−γ◦22 x3)

)
. (20)

The boundary conditions assume vanishing of the stresses at the top of the layer

σ◦113 = 0, σ◦133 = 0 for x3 = 0 (21)
and equality of respective displacements and stresses at the interface

u◦11 = u◦21 , u◦13 = u◦23 , σ◦113 = σ◦213, σ◦133 = σ◦233 for x3 = −h. (22)
Inserting the displacements and stresses into the boundary conditions (21) and
(22) one can obtain the homogeneous equation system. In the matrix notation it
has the form

[M ]
[
A◦1A◦2B◦1C◦12 C◦22 D◦12

]T

= 0. (23)

The system (23) has nontrivial solution when the characteristic equation
det [M ] = 0 is satisfied. Unfortunately, the determinant has long and compli-
cated form.

In order to simplify it was developed into multi Taylor series around
exp(−γ◦11 h) = 0, exp(−γ◦12 h) = 0, exp(−γ◦21 h) = 0, exp(−γ◦22 h) = 0, and limited to
the two terms. This means that there are possible two bulk waves reflections from
the top of the layer only. It is physically justified for viscoelastic medium with
relaxation time long enough.

After such simplification one term of the determinant should have well known
Rayleigh equation form for free elastic surface. Indeed, after factorisation of sim-
plified determinant one of factors has the Rayleigh equation form. The rest of
factors describe the modification of the Rayleigh equation — correction term with
viscoelastic origin. This term vanishes towards the relaxation time.
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In order to separate the correction term the following substitution has been
applied:

α = sx, (24)
and

γ̄◦11 = sf1(s)
√

v2
11 + x2, γ̄◦12 = sf2(s)

√
v2
21 + x2,

γ̄◦21 = s
√

v2
12 + x2, γ̄◦22 = s

√
v2
22 + x2, (25)

where v11, v21, v12, v22 mean reverses of velocities of longitudinal and transversal
waves in the layer and longitudinal and transversal waves in the substrate, respec-
tively, x is interpreted as a reverse of the Rayleigh wave at the free surface of the
substrate. The functions f1(s) and f2(s) come from the Laplace transformations
of the Maxwellian relaxation times and take the form

f1(s) =

√
s

µ̄◦10 +
1

µ̄◦10 sτ
, f2(s) =

√
s

λ̄◦10 + 2µ̄◦10 +
1

τs(λ̄◦10 + 2µ̄◦10 )
. (26)

It is assumed that f1(s)/f2(s) depends on the Poisson ratio only and not re-
laxes. The above assumptions and substitutions allow to eliminate transformation
parameter s from the equation.

That way the independent of s dispersion equation was obtained. It has the
form of sum of the Rayleigh equation and correction term

R + Rcorr = 0. (27)
The correction term has rather complicated form, but it is fit for numerical

calculation. It consists on certain combination of algebraic equation containing
the material constants and thickness of the layer. The numerical calculations for
real substrates and layer materials showed that the correction term is a negative
number with order of magnitude lower value than the Rayleigh wave. In such
depiction the Rayleigh wave velocity change is caused by correction term variation.

3. Conclusions

The results of calculation allow to conclude that the Rayleigh wave velocity
along the elastic substrate — viscoelastic layer interface depends mainly on cor-
rection component value of the characteristic equation. It depends on transversal
and longitudinal bulk waves velocities in the layer and the layer thickness. Ac-
cording to the conclusion the operation principle of the Rayleigh wave gas sensors
with polymeric layer can be interpreted in alternative way. The change in SAW
velocity in the sensor (determining its sensitivity) may be explained not as a layer
mass change but as a result of its solvation — bulk waves velocities decrease.
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