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A method based on a simultaneous fit of several Mössbauer spectra from

a series of measurements is compared with the one based on an independent

analysis of each spectrum. Three different algorithms, namely a least squares

iteration procedure, a Gauss–Seidel function minimization and a genetic al-

gorithm based method are applied and discussed. The conclusions drawn

are supported by a simulated and a measured spectra analysis.
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1. Introduction

An analysis of the Mössbauer spectra composed of some overlapping sub-
spectra having similar hyperfine parameters is not an easy task. In case of a lack
of any additional information concerning the spectral parameters and relations
between them, a fitting procedure is not unique, and the interpretation of the ob-
tained results can be sometimes doubtful, all the more so since some different sets
of the hyperfine parameters give fits of a similar quality. In such case, an intrinsic
consistency of spectral parameters obtained from the series of measurements as
a function of an external parameter, e.g. temperature, composition or magnetic
field, can be taken as a test for the correctness of the fitting procedure. The results
obtained from the whole series should reflect the foreseen influence of the external
parameter on each spectrum separately, as well as the relationship between the
experimental parameters predicted by a theory.

A method based on a simultaneous analysis of several spectra from the series
of measurements is proposed and tested on: (a) two series of simulated spectra
with significantly different statistical quality, (b) a series of the spectra measured
at 119Sn nuclei on Sn-doped CoSb3 skutterudite, (c) a series of the spectra mea-
sured at 57Fe nuclei on Fe1−xTix Fe-rich alloys and (d) a series of the 57Fe-site
spectra recorded on a σ-FeV sample. It has been shown that an assumption that
some spectral parameters are common for all fitted spectra, some of them are in-
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dependent and some follow the predicted or assumed functional dependence on an
external parameter, enables one to fit the series of measurements in a more unique
way.

2. Estimation of fit quality

In the case of a single spectrum the quality of the fit is generally estimated
as the weighted squared deviations sum [1]. It follows a χ2-distribution with the
assumption that the stochastic errors have normal distribution:

χ2 =
1

n−NS

∑

i

[yi − y(vi)]2

σ2
i

, (1)

where yi represents the i-th measured value, y(vi) is the corresponding calculated
value for the velocity vi, σ2

i is the variance associated with the i-th point (σ2
i = yi

in the case of the Poisson distribution), n stands for the total number of measured
points and NS is the number of degrees of freedom (NS describes the total number
of free parameters used in the model).

The quality of the multispectral fit should not be described just by the sum
of χ2

j -values because some spectral parameters are common for several spectra
and their influence on each spectrum must not necessarily be the same. Addition-
ally, some quantities may not be fitted as free parameters, but calculated from
the assumed functional dependence, so the parameters describing this dependence
should be used instead. Because of these restrictions, a formula for the total
χ2-value, χ2

T is proposed

χ2
T =

1∑
j nj −NM

∑

j

∑

i

[yji − y(vji)]2

σ2
ji

, (2)

where index j counts the number of the spectra fitted simultaneously, and i stands
for the summation within a single j-th spectrum. NM describes the total number
of free parameters used in the model.

Let us assume that one has to fit N spectra, the j-th of them is
described by the set of parameters: (c1, . . . , ci, . . . , cnc , ej1, . . . , eji, . . . , ejne ,
dj1, . . . , dji, . . . , djnd

) where ci stands for the i-th parameter common for all fitted
spectra and eji describes the i-th parameter characteristic of a single j-th spec-
trum. Finally, dji is also treated as a characteristic parameter, but its functional
dependence on the external parameter xj is known

dji = fi(xj , pi1, . . . pik, . . . , pinf
). (3)

pik stands for the k-th parameter of the function fi.
The total number of parameters describing the single spectrum, NS is equal

to nc +ne +nd and to N ·NS for the whole series. In the case of the multispectral
fit, one has to find only NM = nc + N · ne + nd · nf independent values, much less
than for N single fits. In this case the set of p parameters is calculated instead of
the d one.

In the set of single fits, the dependence between the set of i-th fitted param-
eters dji and the external parameter xj should be found separately in the next
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step of analysis. This can be achieved by a regression or any other similar method.
The situation is schematically presented in Fig. 1a. Multispectral fit provides a
direct calculation of fi and pi, but one has to pay for this with an increased total
squared deviation sum (Fig. 1b).

Fig. 1. Scheme of the series measuremets analysis for (a) the parameters fitted sep-

arately and (b) the same parameters fitted simultaneously. Thick vertical lines stand

for χ2 values obtained for each spectrum, dashed lines stand for dependences of χ2 on

external parameter. In (c) a comparison between minimization of squared deviation

sums in a single and a multispectral fit is presented.

On the other hand, finding fi and pik with both methods is based on the
minimization of squared deviation sums (SDS): between measured points and fitted
spectra for multispectral fit, χ2

T, and, additionally, between dij parameters and
functional dependence fi for a set of single fits (Fig. 1c):

SDS =
∑

j

χ2
j min +

∑

j

[fi(xj)− dji]2. (4)

Assuming in the first approximation the χ2
j dependence on dj is parabolic

χ2
j (dji) = χ2

j min + (∆dji)2, (5)
where ∆dji is the distance from the dji calculated for χ2

j min in a single fit, the
minimization process relates to the same functional dependences in both methods.
From this point of view, these methods are equivalent and should lead to similar
results.

Unfortunately, the real function χ2
j (dji) is not smooth, specially for low

signal-to-noise ratios (SNR), and a high possibility of finding local minimum in-
stead of the global one occurs. Moreover, multidimensional function χ2

j can possess
several shallow minima, each of them described by a different set of the hyperfine
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parameters, and only one of them corresponds to the “true values” describing the
fitted spectrum. Applying foreseen dependences between parameters just during
the fitting procedure enables, reasonably early, rejection of accidental and not
acceptable values of the parameters.

3. Fitting methods

Fitting of the single spectrum can be carried out with the least squares
method described in [2]. There are standard computer programs available for this
procedure. In order to fit several spectra simultaneously, one can, in principle, di-
rectly use the same fitting algorithm as for the single spectrum with the restriction
to the estimation of the fit quality as mentioned above. However, a total number
of fitted parameters in the multispectral fit is greater than in the single one and
the computer program should have the capability of working with large-enough
sets of data.

One of disadvantages of the least squares methods is the necessity of knowing
values of starting parameters for the fitting procedure. These parameters are often
taken from the “rule of thumb” and may not lead to the convergence of iterations
for poorly resolved spectra, in particular. Moreover, minimization process can
lead to an unacceptable minimum, as it was mentioned above. For that reason
minimization of χ2

T based on the Gauss–Seidel method was tested [3], as well as a
finding the minimum with a program based on genetic algorithms [4]. The former
permits a wider range of starting parameters in calculations, the latter enables,
additionally, localization of the global minimum of the investigated function, not
only the local one.

4. Calculations for simulated spectra

The fitting procedures described above were tested on two sets of six sim-
ulated Mössbauer spectra with a different statistical quality. They are presented
in Figs. 2 and 3 at the top of each figure. Each spectrum consists of two compo-
nents: a single line and a small doublet, with very similar spectral parameters (see
Table). Additionally, a linear dependence of some chosen spectral parameters and
external parameter xj was assumed to hold (xj = j for the simplicity). All spectra
have been simulated with a statistical noise. For the first series of the spectra the
SNR value was high and equal to 45, whereas the second series was characterized
by a poor statistics with SNR = 4.5.

Each set of data was fitted with four independent methods:
1. All spectra were fitted independently with the least squares iteration method.

No assumption regarding their hyperfine parameters was made, starting val-
ues of the fitted parameters were the same for all spectra. The differences
between the starting and the true values were smaller than 0.01 mm/s, the
relative amounts of the subspectra were started from the value of 0.5. Each
spectrum was described by 8 independent parameters (48 independent pa-
rameters for all the spectra).
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TABLE

The hyperfine parameters assumed for simulated spectra.

Parameter x changes from 1 to 6.

Subspectrum 1 Subspectrum 2

abundance [%] 60 40

line width [mm/s] 0.30 + 0.01x 0.30 + 0.02x

isomer shift [mm/s] 0.01x 0.005x

quadrupole splitting [mm/s] – 0.10 + 0.01x

Fig. 2. 57Fe-site Mössbauer spectra simulated for SNR = 45. Solid lines represent the

best fits obtained with method 4. External parameter values, x, are indicated. The

spectrum without statistical noise (solid line) and its components (dashed lines) for

external parameter equal to 1 are shown at the top of the figure.

Fig. 3. The same as in Fig. 2 but for SNR = 4.5.

2. All spectra were analyzed simultaneously. Line widths, quadrupole splittings
and isomer shifts were assumed to be external parameter dependent. The
relative amounts of the subspectra were kept constant and common for all
cases. Starting values for the parameters and the fitting procedure were sim-
ilar like those in method 1. All the spectra were described by 24 independent
parameters.

3. All assumptions were identical like in method 2, except the fitting procedure.
The Gauss–Seidel method for finding the minimum of multidimensional χ2

T
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function was used.

4. Minimization of χ2
T was obtained by the genetic algorithm based method.

This method was succesfully applied in the analysis of the single Mössbauer
spectra having Lorentzian line shapes [5, 6]. For the multispectral fit, pro-
posed here, the individual related to one series of the fitted spectra was de-
scribed by 24 parameters. 2000 individuals were used for calculations with
a mutation probability p = 0.001. The fitness of each series was calculated
as proportional to the inverse of χ2

T.

4.1. Results for the first series (SNR = 45)

As can be clearly seen in Fig. 4, the parameters describing the line position
on the velocity scale (IS, QS) and the line widths (G) could have been fitted with
similar quality independently of the fitting method. Also the dependences of the
parameters on xj were found correctly. A larger difference between the assumed
and the obtained values were, however, obtained for abundances of the subspectra,
the largest being in the case of methods 1 and 2, whereas methods 3 and 4 have
given much better agreement.

4.2. Results for the second series (SNR = 4.5)

Fitting results of the Mössbauer spectra with the low SNR value are pre-
sented in Fig. 5. A failure of method 1 is obvious in this case. Also the values
obtained with method 2 are unsatisfactory (this is caused by a poor statistical
quality of the spectra that results in finding a deeper local minima of χ2

j , even
for the starting parameters very similar to the correct ones). None of the two
methods has supplied a full set of correct fitting parameters, although particular
parameters e.g. IS for the single line had the correct values. The fitted param-
eters obtained with methods 3 and 4 are rather close to the correct values, the
differences between them being not larger than for the first series.

The above examples clearly demonstrate that fitting a series of the spectra
simultaneously can give better results than fitting the same spectra independently,
especially when a proper fitting method has been applied. In other words, methods
3 and 4 fulfilled introduced constraints and provided correct fits even for the
low SNR values. Method 2 was found useful, but only for the spectra with the
high SNR, while for low SNR it is not resistant against finding the local minima
of χ2. The results obtained with method 1 cannot be acceptable for both series
of measurements (the set of partially correct parameters cannot be regarded as
entirely correct). This restricts the least squares iteration methods to the spectra
with good-enough statistics.

5. Calculations for Sn-doped CoSb3

An Sn-doped CoSb3 skutterudite series measurements for various Sn
concentrations are a suitable example for a practical application and testing of
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Fig. 4. Spectral parameters for the simulated spectra (SNR = 45). The correct ones

are in form of solid lines, and the fitted ones with different methods are marked by circles

and dashed lines. xj — external parameter described in the text, A — abundance, IS

— isomer shift, QS — quadrupole splitting, G — line width. Index 1 stands for the

singlet, and 2 for the doublet.

the fitting methods. Doping CoSb3 skutterudite with Sn atoms was carried out
in order to improve its thermoelectric properties, e.g. by influencing the Seebeck
coefficient through changing electron/hole masses. For that purpose one should
control positions of Sn atoms in the matrix (in this case there are only two: Sn
atoms can be (a) located substitutionally i.e. on the Sb crystallographic posi-
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Fig. 5. The same as in Fig. 4 but for SNR = 4.5.

tions, or (b) interstitionally i.e. in a cage). The Mössbauer measurements are well
situated for distinguishing between these two positions.

119Sn Mössbauer spectra were recorded in a transmission geometry on pow-
dered samples using a standard spectrometer and a scintillation detector for the
γ-rays supplied by a Ba119m SnO3 source. The room temperature spectra are pre-
sented in Fig. 6. They can be decomposed into two subspectra with two sets of
the hyperfine parameters different enough to justify the application of the fitting
method 2. Additional subspectrum with isomer shift IS ≈ 0 mm/s corresponds
to an unknown phase containing Sn atoms. Its abundance is very small (it was
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Fig. 6. 119Sn-site Mössbauer spectra of Sn-doped CoSb3 skutterudite for various tin

concentration: (a) 0.5 at%, (b) 1.0 at%, (c) 1.5 at%, (d) 2.0 at%, (e) 2.5 at%. Solid

lines represent the best fits with method 2, dashed lines represent subspectra related to

different crystallographic tin positions.

Fig. 7. 57Fe-site Mössbauer spectra of Fe1−xTix measured at 80 K for various x:

(a) x = 0.02, (b) x = 0.05, (c) x = 0.07, (d) x = 0.09, (e) x = 0.11. Solid lines represent

the best fits with method 4.

not seen in any X-ray diffraction (XRD) measurements) and for that reason it was
neglected in further analysis.
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The analysis was carried out assuming that any differences between the spec-
tra are caused only by different amounts of the (a) and (b) sites, and all other
spectral parameters were kept identical for all the spectra in the series.

All the spectra were fitted simultaneously, using the least squares iteration
procedure. The hyperfine parameters obtained from the fit enabled decomposition
of each spectrum into two subspectra related to the different crystallographic po-
sitions of tin. Also abundances of Sn atoms in position (a) or (b) were calculated
with a good accuracy. The results are close enough to similar results gained for
the NiSbSn skutterudite system. See Ref. [7] for details.

6. Calculations for Fe1−xTix alloys

The fitting of a series measurements on Fe–Ti alloys is another example of
the application of the presented methods. The question which should be answered
this time is: are titanium atoms distributions in iron matrix random, and, if no,
what type of inhomogeneity is observed for this system?

57Fe-site Mössbauer spectra, whose examples are shown in Fig. 7, were
recorded at 295 K and at 80 K in a transmission geometry using a standard spec-
trometer and a 57Co/Rh source for gamma radiation of 14.4 keV energy. The
samples were in form of powder, measurements at liquid nitrogen (LN) tempera-
ture were carried out with temperature stabilization within 0.1 K.

It was assumed that each spectrum was a superposition of a number of sex-
tets corresponding to various atomic configurations around the probe Fe atoms,
in the first two neighbor shells. Composition-dependent changes of spectral pa-
rameters i.e. the hyperfine field, H, and the isomer shift, IS, were assumed to
be additive, too. The hyperfine field at Fe nuclei having m Ti atoms in the first-
neighbor shell (NN) and n ones in the second-neighbor shell (NNN), H(m,n;x)
can thus be written as follows:

H(m,n;x) = H(0, 0;x)−m∆H1 − n∆H2, (6)
where ∆H1,2 stands for a change of H due to one Ti atom situated in NN (index 1)
or in NNN (index 2). Similar relationship was assumed to hold for the isomer shift.
Such a procedure was successfully used for various Fe-based alloys e.g. [8] and the
shifts ∆H1,2 and ∆IS1,2 are in a wide range concentration-independent. However,
the critical concentration at which the additivity formula breaks down depends
on a foreign element: for Fe–Ti it seems to be valid only for x < 8. In the
present fitting procedure the spectra were treated as composed of two parts. A
low-field subspectrum observed for x > 8, was accounted for by a doublet, whose
hyperfine parameters were calculated separately for each spectrum. A high-field
subspectrum in form of a sextet was fitted assuming the ∆H1,2 and ∆IS1,2 are
concentration-independent. The H(0, 0, x) and I(0, 0, x) were assumed to be a lin-
ear function of concentration. Only the sextets corresponding to the configurations
with m < 3 and n < 3 were taken into account. The starting values of a prob-
ability configuration, P (m,n; x) should be close to the nominal one, PN(m,n;x)
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derived from the binomial distribution. The tendency of changes for a given (m,n)
configuration should be also similar for all investigated concentrations. Following
this idea the probability values were calculated according to the formula

P (m,n;x) = PN(m, n; x) + Pm,n(x), (7)
where Pm,n(x) stands for a polynomial of x describing the correction of the (m,n)
configuration probability with respect to its nominal value.

Fig. 8. Probabilities of the atomic configurations, P (m, n) taken into account in the

fitting procedure versus Ti-content, x. The P (m, n) values found from the spectra

recorded at 80 K are shown as full symbols, those obtained from the spectra measured

at 295 K as open symbols, and the solid lines represent the values expected for the

random distribution.

In order to be up to the above assumptions all the spectra were fitted si-
multaneously with common hyperfine parameters and 9 formulae describing Pm,n

polynomials. The method based on the genetic algorithms as well as the Gauss–
Seidel method of χ2

T minimization were used. This choice of the fitting methods
was caused by a high enough degree of complication of the chosen model, where the
polynomials of at least 3rd order should be fitted. The knowledge of the best-fit
spectral parameters enabled evaluation of the concentration dependent probabil-
ity of each configuration (m,n) for the two temperatures, independently (Fig. 8),
and proved that the distribution was not random, but some configurations were
occupied preferentially. See Ref. [9] for details.
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7. Calculations for σ-FeV series measurements

Analysing of a set of measurements on σ-FeV alloys is the last example of
the application of these methods. The problem which should be solved here is an
analysis of a series of 13 Mössbauer spectra measured at different temperatures.
The spectra are poorly resolved and most of their parameters are unknown. On
the other hand, all these parameters (except two of them) should be identical for
all temperatures.

The crystallographic structure of the σ-phase was identified as close-packed
tetragonal — space group D144h — P42/mnm — with 30 atoms in the unit
cell, which are distributed over five crystallographically non-equivalent lattice sites
with different occupation numbers (2, 4, 8, 8, and 8, respectively). The sites have
rather high coordination numbers (12 to 15) and quite different local symmetry.
Non-statistical distribution of the two constituent atoms on the different lattice
positions is present.

The Mössbauer spectroscopy belongs to the most suitable methods for
investigations of structural properties and magnetic behavior of the Fe-based
σ-phase. This stems from its high sensitivity to the hyperfine parameters, which
are strongly influenced by the local configuration of NN atoms of the 57Fe atom
probe. A typical Mössbauer spectrum of the σ-phase must be composed of at
least five subspectra with various intensities related to the iron occupation of the
five inequivalent crystallographic sites. Although the corresponding hyperfine pa-
rameters (IS, QS, and H) differ from each other, the differences are comparable
or smaller than the typical experimental line widths. Consequently, the spectrum
is not well resolved, even below the Curie temperature. Some of the parameters
describing the spectrum could have been determined in other experiments (e.g.
relative subspectra contributions should be proportional to the Fe concentrations
on particular sites determined in the neutron diffraction experiment), but the rest
(IS, QS, H, and line widths G) should be obtained from the fitting procedure. The
assumption that all the parameters (except average IS and H values) are identical
for all the spectra measured at various temperatures can seriously facilitate the
fitting procedure and increase the reliability of the fitting results.

Examples of 57Fe-site Mössbauer spectra are shown in Fig. 9. They were
recorded at the range of 4–295 K in a transmission geometry using a standard
spectrometer and a 57Co/Rh source for gamma radiation of 14.4 keV energy. The
samples were in form of powder, measurements were carried out with a tempera-
ture stabilization within 0.1 K.

Each spectrum can be described with five sets of IS, QS, G and H (the latter
only below the Curie temperature). In the analysis of the spectra the QS and G
were assumed to be independent of temperature. The average center shift 〈CS〉
was calculated as the weighted mean over all subspectra. Generally, the center
shift consists of two terms CS = IS + SOD, where IS is the isomer shift, which
is proportional to the s-electron density at the Fe-nucleus, and SOD the second-
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Fig. 9. 57Fe Mössbauer spectra of σ-Fe60V40 for various temperatures (indicated in the

figure). Solid lines represent the best fits to the spectra.

-order Doppler shift, which is related to the atomic mean square displacement
and, therefore, is strongly temperature dependent. Assuming that in the first
approximation the phonon spectrum can be described by the Debye model, and
taking into account that the temperature dependence of IS can be neglected, the
temperature dependence of CS can be related to the Debye temperature. The
obtained SOD(T ) dependences are smooth enough (see Fig. 10) to determine
Debye temperature values for different alloy compositions with a good accuracy,
which was the main aim of the applying this fitting procedure.
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Fig. 10. Second-order Doppler shifts versus temperature for various vanadium concen-

trations. The extreme center shift 〈CS〉 curves are indicated in the inset for comparison.

8. Conclusions

It should be clearly noted that the analyses based on the well-known least
squares methods are of a great importance and they give good results for recorded
spectra. In the case of overlapping subspectra having similar hyperfine parame-
ters, the simultaneous analysis of several Mössbauer spectra with either common
parameters or external parameter dependent seems to be very useful. Even for
poorly resolved spectra this procedure enables finding values of the parameters as
well as dependences between them, a task hardly accessible for single fits. Ap-
plying χ2 minimization methods different than the least squares one makes the
minimization procedure less sensitive to the starting values of the parameters and
to statistical quality of the spectra. The fitting method enabling localization of
the global minimum of χ2

T, independently of the starting parameters, is also worth
underlining. The costs one has to pay for such profits are twofold. The first one is
connected with a sort of the problem to be solved: for more complicated or unusual
measurements, dedicated computer programs should be prepared. The second one
is due to the fact that calculations based on method 3 or 4 are time consuming
and convergence is rather slow. For method 4 an acceleration of calculations can
be achieved by using parallel search genetic algorithms [10, 11] or, by applying
more advanced versions of them.

The simultaneous analysis should be, however, applied very carefully, more
particularly since one has to know the kind of dependences on external parameter.
There is a danger that new information will be lost when the dependence has not
been correctly chosen. Sometimes it is enough (and more safely) to assume a type
of monotonicity for the dependence only and to resign from an analytical formula.
This allows one to check the kind of the dependence first, and then apply it to the
fitting procedure in the next step.
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