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The non-classical distribution function formalism is used for studying
the electron transport in a nanosystem. We calculated the current—voltage
characteristics of a triple barrier one-dimensional nanostructure which is
connected to three-dimensional (highly doped semiconductor) reservoirs by
the ohmic contacts. We also estimated the peak-to-valley ratio for the con-
sidered nanostructure and discussed the effect of switching the bias from
peak-to-valley and from valley-to-peak voltages.
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1. Introduction

Rapid development of fabrication and measurement techniques in the semi-
conductor industry allows one to produce electronic devices that are smaller than
50 nm. At this scale the quantum effects fully determine the optical, magnetic as
well as transport properties of systems. Among these devices, the semiconductor
multilayered nanostructures are very promising artificial structures for application
in the new generation of electronic devices. In order to investigate the transport
properties of such systems the quantum theory of electronic transport is required.
Many theoretical works have been devoted to the problem of electronic transport
through the resonant tunnelling diode, i.e. the double barrier systems [1-3] and
their natural extension — the triple barrier nanostructures [4, 5]. In the present
work, we have applied the non-classical distribution function formalism based on
the Wigner distribution function [6, 7] to the triple barrier nanostructure. We
have solved numerically the quantum kinetic equation for the Wigner function
[8, 9] and determined the current—voltage characteristics and the switching time
of the current into nanostructure. The paper is organised as follows. In Sect. 2, we
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present the theoretical model of the triple barrier nanosystem and briefly discuss
the formalism of non-classical distribution function. In Sect. 3 we apply the formal-
ism to quantitative analysis of the electronic transport through the nanosystem.
Section 4 contains conclusions.

2. Nanodevice model and formalism

The fabrication of multilayered nanostructures is mainly based on two exper-
imental techniques, namely the molecular beam epitaxy (MBE) and metalorganic
chemical vapour deposition (MOCVD) [10, 11]. The obtained structures consist
of layers of different semiconductors, in most cases having nearly the same lat-
tice parameters. The electronic properties of such systems depends on the layer
thickness and properties of constituent semiconductors. The most common multi-
layered systems are based on GaAs and Al,Ga;_,As where x varies between 0.1
and 0.4. In such structures, the lattice parameters of both semiconductors are
almost the same, therefore, the effect of strain is not significant. On the other
hand, the differences in band gaps of GaAs and Al,Ga;_,As lead to discontinu-
ities in conduction and valence bands. These band discontinuities form quantum
barriers and quantum wells in the potential energy for conduction electrons and
holes, respectively.

In this paper, we consider the triple barrier nanosystem composed of GaAs/
Alp 3Gag.7As/GaAs/Aly 3Gag 7As/GaAs layers as it is shown in Fig. 1. In the
potential wells, the resonant states with discrete energy levels are formed. Under
bias voltage, conduction electrons can tunnel through the triple barrier nano-
structure from left to right reservoirs. This process is modified by the gate voltage
that allows one to force the resonance condition for tunnelling process in the na-
nodevice. We describe the electrons in this nanostructure by the single-particle
effective-mass Hamiltonian within the 1D approximation. We assume that the
triple barrier nanostructure is connected to the three-dimensional highly doped
semiconductor reservoirs by the ohmic contacts. Each of the reservoirs (L, R) is
characterised by the equilibrium Fermi—Dirac distribution function, with Fermi
energy E;(R).

The conduction electrons are described by the non-classical distribution func-
tion py, (x, k,t) which satisfies the integro-differential equation [2, 8, 9]:

78’)”(;;’“’” + %ngf’w - ﬁ /dk’ U,k — k' )pu(a, k), (1)
where the integral kernel U, (x,k — k') represents the non-local potential which
takes into account a modification of confining potential U(z) by the external static
electric field. The form of the non-local potential is given by

Up(z, k= k') = /dx’ [U(z+a'/2) —U(z — 2'/2)] exp ( —i(k — k')2’). (2)

The non-classical distribution function p,(z,k,t) is defined as the Wigner—Weyl
transform of the one-particle density matrix and is called the Wigner distribution
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Fig. 1. Energy band diagram of a triple barrier system under bias voltage. The po-

tential of the gate Ugate is defined as the difference between left and right quantum-well

potentials.

function [6, 7]. From the mathematical standpoint, the Wigner function does not
satisfy all the necessary conditions for classical distribution functions, namely it
can take negative values in some regions of the phase-space. This feature makes it
impossible to interpret the Wigner function as a classical probability distribution
function. Nevertheless, the Wigner function is a very useful tool for the quantum
modelling of electron transport in nanodevices because the moments of the Wigner
function have simple physical interpretation, namely, the zero moment gives the
electron density [9],

n(w,t) = o [ Aot 3)
27
and the first moment represents the flux current
e hk
j = — — : 4
) = 5= [ AR pu(a ) (1)

The Wigner function can be determined by solving the steady-state form of Eq. (1)
with the open boundary conditions having the form [12]:

pw(()?k) = fL(k)v
k>0
pu(L k)| = fR(k), (5)
k<0
where fU“R) (k) is given by
L(R) (1) — BT IR S Ul vy
f (k) 73 In (1 + exp < T\ 2m Eg , (6)

where T is temperature, m is the effective mass, and all other symbols have the
usual meanings.
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3. Results and discussion

We have applied the formalism presented in Sect. 2 to the problem of resonant
tunnelling through the triple barrier nanostructure at T' = 77 K. In our calculation
we assume that the effective mass of conduction electron is constant in the entire
region of nanodevice. The material parameters of the device are presented in Fig. 1.
The calculated current—voltage characteristics of the triple barrier nanodevice for
two different gate potentials are shown in Fig. 2. For the zero gate potential,
Ugate = 0 €V, the I-V characteristic shows four broad maxima peaked around
Upias = 0.05, 0.13, 0.2, and 0.35 V, respectively. On the contrary, for the gate
potential equal to Ugate = 0.1 eV there is only one current peak with higher
magnitude and one maximum. These two characteristics coincide in the region of
higher voltages (above 0.6 V).

Current Density [106 A/cmz]

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Bias Voltage [V]

Fig. 2. -V characteristics of triple barrier resonant tunnelling system.

Here we present the qualitative explanation of the results. The free electrons
are injected to the triple barrier nanosystem with energies approximately equal to
the Fermi level in the left reservoir. The bias voltage shifts the resonant states in
the nanosystem and the electrons with energies close to the resonances can pass
through the nanosystem to the right reservoir with high probability. It means that
the maximum current is achieved if the resonant-state energy is equal to the Fermi
energy of the left reservoir. The application of the gate voltage to one of the wells
(right potential well in Fig. 1) allows to manipulate the resonant states in the
right well with respect to the left quantum well. The manipulation of the depth
of the one of wells is realised experimentally (cf. [13]). The current peak in Fig. 2
corresponds to the situation when the appropriate resonant levels in both wells
coincide with the Fermi energy of the left reservoir. In this case, the maximum
tunnelling current flows through the nanodevice.
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Fig. 3. The time dependence of the current density for peak-to-valley and valley-to-
-peak switching of the bias voltage.

One of the most important technological parameters characterising the na-
nodevice is the peak-to-valley ratio that gives the indirect measure of the negative
differential resistance. It results from our calculations that the peak-to-valley ratio
is equal to 27. This high value suggests that such nanodevice can be used as a
logic element in nanoelectronics.

We have also determined the bias switching time from peak to valley and
valley to peak. We can extract these parameters from the time dependence of
current density. For this purpose we have performed time dependent simulations
based on Eq. (1). The initial condition has been chosen in the form of a function
which corresponds to the steady-state Wigner function for the current peak and
the steady-state Wigner function for the current valley with Ugate = 0.1 eV, re-
spectively [14]. In computer simulations, the bias voltage is suddenly raised from
0.2 V (the peak voltage V,,) to 0.3 V (the valley voltage V). Next, the bias was
rapidly lowered from V, to V. Figure 3 shows the results of simulations. For
the peak-to-valley switching, the steady-state current is reached after a time of
1000 fs, while for the valley-to-peak switching, the steady-state current stabilises
after 2000 fs. The results of our calculation of the switching time are comparable
to the experimental data for the resonant-tunnelling nanodevices [15].

4. Conclusions

In summary, we have applied the non-classical distribution function formal-
ism based on the Wigner distribution function to the triple barrier nanodevice.
We have calculated the basic characteristics of such nanosystem and have shown
that the nanosystem exhibits a resonantly enhanced negative resistance. We have
demonstrated that the triple barrier nanodevice controlled by the gate has the
short switching time.
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