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The poor man’s scaling technique is applied to the problem of electronic

transport through a single quantum dot (with finite Coulomb repulsion)

asymmetrically coupled to electrodes. The considered quantum dot is cou-

pled to ferromagnetic electrodes, whose magnetic moments are non-collinear.

The analysis and numerical illustration of spin splitting of the dot level as

well as of the Kondo temperature on the coupling asymmetry is presented

and discussed.

PACS numbers: 75.20.Hr, 72.15.Qm, 72.25.−b, 73.23.Hk

1. Introduction

The Kondo effect in quantum dots has been theoretically investigated first
for nonmagnetic systems [1], then for magnetic systems with collinear magnetic
configurations [2], and finally in magnetic systems with non-collinear magnetic
configurations. Recently the problem of the Kondo effect in quantum dots attached
to ferromagnetic electrodes with non-collinear magnetic configuration and with
asymmetrical coupling to the leads has been addressed [3, 4].

In this work we apply the “poor man’s scaling” approach to the Kondo
problem in quantum dots coupled asymmetrically to ferromagnetic leads with non-
-collinear magnetic moments, assuming finite Coulomb repulsion parameter U on
the dots.

2. Model

We consider a single-level quantum dot attached to two ferromagnetic elec-
trodes, whose magnetic moments are in general non-collinear [3]. The considered
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system is described by the Hamiltonian

H =
∑
α

Hα + HD + HT, (1)

where the term Hα =
∑

k s εα k sa
†
α k saα k s (α = L, R) describes non-interacting

electrons in the left and right electrodes, respectively.
The term HD =

∑
σ εdσd†σdσ + Un↑n↓ describes the dot, where εdσ denotes

single-particle energy of the dot’s level. Additionally, the Zeeman energy due to
external magnetic field Bz

ext applied along the dot’s quantization axis is taken into
account. Here, d†σ (dσ) is the creation (annihilation) operator of an electron with
spin σ on the dot, while a†α k s (aα k s) describe creation (annihilation) of an elec-
tron with spin s and wave-vector k in α-th electrode and nσ = d†σdσ. The hopping
events between the dot and electrodes are described by the tunneling term

HT =
∑

k α

∑
sσ

Tα k sa
†
α k sRα s σdσ + h.c., (2)

where Tα k s denote the tunneling matrix elements, whereas Rα s σ are elements
of the relevant spin rotation matrix. The coupling strength is described by
Γα s(ε) = 2π

∑
k |Tα k s|2δ(ε − εα k s) and is assumed to be energy independent

within the energy band extending from −D to D, Γα s(ε) = Γα s = Γ 0
α(1 ± pα),

where pα denotes spin polarization in the α-th electrode. In this paper the anal-
ysis is restricted to the case with pL = pR = p and the asymmetry in coupling
to the leads is taken into account via the asymmetry parameter 0 < γ < 1,
TL k s = γTR k s. The angle between magnetic moments of the leads is assumed
to be θ.

3. Method and results

The “poor man’s scaling” approach [5] is applied to the system described
by the Hamiltonian given by Eq. (1). In order to perform the scaling procedure
the dot is assumed to be initially singly occupied, i.e. −D ¿ εdσ ¿ µα and
εdσ + U À µα, where µα denotes the electrochemical potential of the electrodes
(µα = 0). The next step is to integrate out the high-energy spin-dependent charge
fluctuations in the conduction energy band and hence reducing the energy band
width. Since this procedure takes into account spin-dependent charge fluctuations
the bare dot level εdσ is renormalized, and the spin-splitting δε = εd↑ − εd↓ occurs,

δε =
∆
π

p

√
cos2 θ/2 +

(
γ2 − 1
γ2 + 1

)2

sin2 θ/2× ln(D/D̃)− gµBBz
ext, (3)

where ∆ =
∑

α Γ 0
α and D̃ is the energy band cut-off. When D̃ reaches the dot level,

the scaling theory for Anderson-like Hamiltonian breaks down. The result given
by Eq. (3) is in agreement with that obtained in Ref. [4]. In the case of symmetric
coupling, γ = 1 and in the absence of an external magnetic field, the spin splitting
of the dot level reaches its maximal value for parallel configuration, namely for
θ = 0, whereas for the antiparallel configuration, θ = π, the spin splitting vanishes.
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Similar result has been obtained in Ref. [6]. If coupling asymmetry is taken into
account, δε has maximal values for parallel configuration, while for the antiparallel
one it is minimal but does not vanish (δε 6= 0).

Figure 1 shows variation of the dot spin splitting δε̃d = πδε/∆ in the absence
of external magnetic field with the asymmetry parameter a2, a = (γ2 − 1)/(γ2 +
1), for a few indicated magnetic configurations. It is clearly visible that for the
parallel configuration (solid line) splitting is maximal and does not depend on a2.
For antiparallel configuration (dash-dotted line) the splitting is minimal for all
ranges of a2 and increases with increasing a2 (decreasing γ). For all non-collinear
magnetic configurations the spin splitting also increases with increasing coupling
asymmetry.

Fig. 1. Variation of the dot spin splitting δε̃d in the absence of external magnetic field,

calculated as a function of the asymmetry parameter a2 for few magnetic configurations

indicated in the figure.

Since the scaling technique is no longer valid for Anderson-like Hamiltonian,
Eq. (1), the next step in the procedure is to apply the Schrieffer–Wolff transfor-
mation [7] in order to obtain the effective s–d Hamiltonian. The scaling procedure
is then continued, for the Kondo Hamiltonian. The scaling procedure leads then
to the scaling equations for the effective exchange parameters. Finally, solving the
scaling equations gives the Kondo temperature [4]:

TK = D̃ exp


−

arctanh(p
√

cos2 θ/2 + a2 sin2 θ/2)

2j0(ρ↑ + ρ↓)p
√

cos2 θ/2 + a2 sin2 θ/2


 , (4)

where j0 = (∆/π)U/[|εd|(U + εd)].
In Fig. 2 the Kondo temperature is plotted vs. coupling asymmetry pa-

rameter a2 for few magnetic configurations. For the parallel configuration, θ = 0,
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Fig. 2. Kondo temperature TK as a function of the asymmetry parameter a2 for few

magnetic configurations indicated in the figure, the other parameters are p = 0.5, U =

5 eV, εd = −0.2 eV, ∆ = 0.05 eV.

the asymmetry vanishes, see Eq. (4). We observe that in general the coupling
asymmetry reduces the Kondo temperature and moreover the Kondo temperature
increases with increasing θ angle, and reaches maximal values for the antiparallel
magnetic configuration.
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