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We show how to compute the optical functions (the complex magneto-

susceptibility, dielectric function, magneto–reflection and ellipsometric spec-

tra) for semiconductor quantum disks exposed to a uniform magnetic field

in the growth direction, including the excitonic effects. The optical response

is calculated for an oblique incidence of the propagating electromagnetic

wave and for input waves with different polarization. The method uses the

microscopic calculation of nanostructure excitonic wave functions and en-

ergy levels, and the macroscopic real density matrix approach to compute

the electromagnetic fields and susceptibilities. The electron–hole screened

Coulomb potential is adapted and the valence band structure is taken into

account in the cylindrical approximation, thus separating light- and heavy-

-hole motions. The novelty of our approach is that the solution is obtained

in terms of known one-particle electron and hole eigenfunctions, since, in the

considered nanostructure due to confinement effects accompanied by the e–h

Coulomb interaction, the separation of the relative- and center-of-mass mo-

tion is not possible. We obtain both the eigenvalues and the eigenfunctions.

The convergence of the proposed method is examined. We calculate the

magnetooptical functions, including the optical Stokes parameters and ellip-

sometric functions for the case of oblique incidence. Numerical calculations

were performed for InAs (disk)/ GaAs (barrier) disks. A good agreement

with experiments was obtained.

PACS numbers: 71.35.Cc, 71.35.Ji, 73.21.La, 78.20.Ls, 78.67.Hc

1. Introduction

Optical properties of lower-dimensional structures are determined by the
quantum size effect and excitons. In the case of excitons, the confinement of
quasiparticles in a nanostructure leads to enhancement of the oscillator strength
of excitons and thus to enhancement of excitonic effects. When an external mag-
netic field is applied, the excitonic effects are even more enhanced. Calculations
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of optical properties, taking into account all the mentioned effects (confinement,
Coulomb attraction, magnetic field) are quite complicated. A separation of center-
-of-mass motion and the relative motion is not possible, and one has to solve a
complicated boundary problem in a 6-dimensional configuration space. Therefore
various approximations have been proposed (for a review see, for example, [1] and
references therein).

In the present paper we consider a quantum dot of cylindrical shape, with
the symmetry axis z, and with infinite hard wall potentials for electrons and holes
located in the xy plane at the radius R. Such a quantum dot is also called a quan-
tum disk (QDisk) [2]. The motivation of choosing the disk geometry can be found
in Ref. [2], see also references therein. Below we compute the magnetooptical func-
tions of QDisks when a static magnetic field B is applied in the growth direction,
which is identified as the z-direction. As it was shown, for example, by Cortez et
al. [3], the optical properties of QDisks depend on the polarization of the incident
wave. In experiments by Cortez two types of waves were considered: a wave po-
larized in the plane of the disk (TE), a wave polarized in the growth direction (z),
and a TM wave obtained by a guided-wave mode. We will extend this discussion,
considering the case of an oblique incidence and an arbitrary polarization of the
incident wave. In addition, we will consider the effects of an applied magnetic
field. The below presented calculations take into account the e–h Coulomb inter-
action in its full three-dimensional shape. In addition, the confinement effects and
the effects of an external magnetic field are fully accounted for. The method was
successfully applied in calculations of magneto- and electrooptical properties of
quantum rods and superlattices [4, 5], and quantum disks for the case of a linearly
polarized incident wave, propagating in the growth direction [6].

To obtain the optical response we apply the real density matrix approach
[7, 8]. In this approach the linear response is described by a set of coupled equa-
tions (constitutive equations (CEs)) for two-point correlation functions Y12Hν and
Y12Lν for the ν-th heavy-hole exciton (Hν) and the ν-th light-hole exciton (Lν),
and a Maxwellian field equation. Below we consider the lowest H1, L1 → C
transition. We consider only the valence-to-conduction band transitions with the
corresponding effective masses. The CEs have a form of Schrödinger’s equation
with a source term, which reflects the light–matter interaction. The operator
Heh, which occurs in the above equation, is the two-band exciton effective mass
Hamiltonian containing kinetic energy terms, screened Coulomb interaction, con-
finement potentials, and the terms describing the carriers interaction with the
applied magnetic field. The functions YH, YL give the total polarization of our
effective anisotropic medium

P(R, t) = 2
∫

d3r [M∗
H(r)YH(r, R, t) + M∗

L(r)YL(r, R, t)] , (1)

where M is the dipole density appropriate to the transition H, L → C. The above
equation with the constitutive equations connect the polarization with the elec-
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tric field of the propagating wave. Both polarization and electric field must obey
Maxwell’s equations, which must be solved to obtain the propagation modes.

2. Excitonic magnetosusceptibility tensor and optical functions
We want to compute the optical linear response to a linearly polarized inci-

dent wave. The electric field E is obtained in a self-consistent way from CEs and
the Maxwell equation, where the polarization (1) acts as a source. In the first step
we express the functions Y by means of eigenfunctions Ψ of the QDisk Hamilto-
nian. By the strong QDisk anisotropy we can separate the fast carriers movement
in the plane perpendicular to the magnetic field, expanding the eigenfunction in
series

Ψ(Z, z, ρe,ρh) =
∑

n1,m1,n2,m2

ψe
n1m1

(ρ1, φ1)

×ψh
n2m2

(ρ2, φ2)g(Z)fn1m1n2m2(z), (2)
where ψnm(ρ, φ) are the known eigenfunctions of the electron (hole) motion in mag-
netic field taken in the symmetric gauge, and fn1m1n2m2(z) unknown functions to
be determined; z and Z are the relative and the center-of-mass coordinates in
the z-direction, respectively. Due to the disk geometry the center-of-mass motion
does not influence the eigenenergies, and we assume that it practically rests at
Z = 0. The functions ψnm(ρ, φ) for a particle with charge q are known and can be
expressed in terms of the Kummer function of the first type, see, for example [4].
The one-particle eigenenergies ε

(e,h)
n,m follow then from the equation ψnm(R, φ) = 0,

R being the QDisk radius. The functions fnm and the total energy ε obey an
infinite system of equations(

ε(e)
n1m1

+ ε(h)
n2m2

− µ‖
µz

∂2

∂z2

)
fn1m1n2m2(z)

+
∑

n′1m′
2n′2m′

2

V
n′1m′

2n′2m′
2

n1m1n2m2 (z)fn′1m′
1n′2m′

2
(z) = εfn1m1n2m2(z), (3)

εnm being the corresponding one-particle eigenvalues, and V the potential matrix
elements

V
n′1m′

2n′2m′
2

n1m1n2m2 (z) = Vii′(z)

= 〈ψ(e)
n1m1

ψ(h)
n2m2

| −2√
(ρ1 − ρ2)

2 + z2

|ψ(e)
n′1m′

1
ψ

(h)
n′2m′

2
〉. (4)

The functions fn1m1n2m2(z) must obey proper boundary conditions at the points
z = ±(me/µ)(L/2). The infinite expansion (2) is exact since the functions
ψe, ψh form a complete orthonormal set. The accuracy and convergence of the
above method has been discussed in Ref. [4].

3. Results
Replacing the second derivative by discrete differences we transform Eqs. (3)

into matrix equations which are solved numerically. The same type of equations
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hold for the heavy- and light-hole excitons. As the results we obtain the eigenen-
ergies and eigenfunctions which are used to solve the constitutive equations. We
performed numerical calculations for InAs (disk)/ GaAs (barrier) QDisks, hav-
ing in mind the experimental results by Cortez et al. [3]. We used the same
band parameters (effective masses, band gap, effective Rydberg and Bohr radius)
as in Ref. [2]. As we noticed in Ref. [6], we can restrict the number of functions
fnm,n′m′ used, obtaining a good convergence. In the case considered it was enough
to use six lowest order functions. The results for the three lowest energy states for
heavy-hole and light-hole excitons as functions of the applied magnetic field are
displayed in Fig. 1. The difference between the dotted and solid lines denotes the
corresponding excitonic binding energies. Let us note the difference between the
H and L states, both in position and curvature. Similar calculations performed
for an In0.55Al0.45As (disk)/ Al0.35Ga0.65As (barrier) QDisk have shown a good
agreement with the experimental results by Wang et al. [9] (see also Ref. 6).

Fig. 1. (a) The calculated diamagnetic shifts of the three lowest energy states for the

heavy-hole exciton in an InAs/GaAs QDisk of height Lz = 0.9 nm and an effective

disk radius R∗ to fit the experiments. The value 0.4a∗e ≈ 13.9 nm for the disk radius

gives a reasonable agreement. The dotted lines show results obtained without Coulomb

e–h interaction accounted for, and the solid lines are results including the Coulomb

interaction. (b) The same for the light-hole exciton.

The so obtained eigenfunctions (2) and eigenvalues were then used to com-
pute the heavy- and light-hole exciton amplitudes YH, YL, and the corresponding
polarization. We assume that the QDisk material has the same band structure
as the corresponding bulk material. In the case of InAs QDisks, which we will
discuss, we have a direct gap, and at the Γ point the valence band splits into the
heavy-hole HH (H), and the light-hole LH (L) subbands. The conduction band
C will be considered as non-degenerate. An external wave with an appropriate
frequency ω induces electronic transitions between the valence subbands and the
conduction band. In the disk geometry we take a cylindrical approximation for
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Fig. 2. The imaginary part of the QDisk susceptibility for two types of the polarization

of the incoming wave.

Fig. 3. The QDisk magnetoreflectance for oblique incidence, the incidence angle equals

π/4.

the bands. The transition HH → C is induced only by a wave polarized in plane.
The transition LH → C is allowed for both, in-plane and z polarizations (see, for
example [10]). These properties are accounted for by definitions of the dipole tran-
sition moments M . Assuming a point-like shape for all relevant components of
M , we can compute relevant components of the QDisk average complex magneto-
susceptibility tensor

χzz(ω,B) = χL(ω, B),

χxx(ω,B) = χyy(ω, B) = χ‖(ω, B) = χ‖L(ω, B) + χ‖H(ω, B). (5)
Depending on the polarization of the incoming wave, we can observe either the
component χzz (z-polarization), or χ‖ (in-plane polarization). The imaginary
parts of these components for two values of the applied magnetic field are dis-
played in Fig. 2. We can observe a blue shift of the peaks and changes in their
oscillator forces. Having the susceptibility tensor, we can determine the dielectric
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function ε = εb +χ and hence all the optical properties of an ensemble of quantum
disks. We have computed the QDisk magnetoreflectance and the Stokes parameter
s3 (not shown). The reflectance is computed for the case of an oblique incidence
where two reflection coefficients, Rs and Rp can be distinguished. They are shown
in Fig. 3 for two values of the applied field.

4. Conclusions

We have shown how magnetooptical functions for quantum disks in the exci-
tonic energy region can be computed with a high degree of accuracy. The structure
of the optical functions spectra arises from the interplay of three types of quanti-
zation: quantization connected with the interaction of the charged particles with
external magnetic field, quantization according to the Coulomb interaction and
that connected with the finite size of the considered nanostructure. The depen-
dence of the spectra on the polarization of the incoming wave is also shown.
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