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Phonon-Assisted Tunneling
of an Electron in a Strained
Self-Assembled Quantum Dot Molecule
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Institute of Physics, Wroctaw University of Technology
Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland

We calculate phonon-assisted relaxation rates in a self-assembled quan-
tum dot molecule. The calculation is based on wave functions obtained
within an envelope function approach, including strain effects. The single-
-phonon relaxation is shown to be efficient for separations between the dots
around 10 nm when, in addition, the dots are brought close to resonance.

PACS numbers: 73.21.La, 73.63.Kv, 63.20.kd

1. Introduction

Carrier transfer and relaxation between quantum dots (QDs) are observed
in many optical experiments [1-4]. So far, phonon assisted tunneling was theoret-
ically studied for various electron configurations in lateral quantum dot molecules
(QDMs) generated by electrostatic potentials [5—7]. For vertically stacked self-
-assembled structures, only a transfer process mediated by the Coulomb interac-
tion was analyzed [8-11], which is relevant for relatively large separations between
the dots. The problem with self-assembled structures is that the wave functions
critically depend on the strain distribution. Since the tunneling rates are expo-
nentially sensitive to the shape of the energy barrier between the two dots one has
to include a realistic calculation of the electronic states.

Strain fields and the resulting electron states have been successfully calcu-
lated for single- and double QD structures [12-14]. However, for the carrier—
phonon interaction problem to be treatable, the electron wave functions must be
known in a reasonably simple form and their computation should be possibly fast.
As a trade-off between the requirements of simplicity and accuracy, we choose to
use a kind of strain-dependent effective mass approach. Thus, we first calculate
the strain distribution for a system of two dome-shaped, vertically stacked self-
-assembled InAs/GaAs QDs within the continuum elasticity approach in a cylin-
drical approximation. Next, we determine the “local band structure” at a given
point from the 8-band kp Hamiltonian, including the effects of the local strain, by
perturbative eliminating the coupling to the hole bands. From this we extract the
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local electron effective mass and the local conduction band edge which is then used
as the effective potential. The wave functions for the two lowest states in the QDM
are calculated using a variational method based on the “adiabatic” separation of
variables [15].

The electron wave functions obtained in this way are used for the calculation
of the phonon-assisted tunneling rate between states localized in the two dots in the
presence of an external electric field (which we include as a parameter that allows
us to bring the dots to resonance). We show that the tunneling rate has a nontrivial
dependence on the distance between the dots and on the energy difference between
the confined states, which results from the interplay between the overlap of the
wave functions and the splitting between the energy levels.

2. Strain

We consider an axially symmetric system composed of two dome-shaped QDs
aligned along the growth axis of the semiconductor structure. The geometry of
the system is shown in Fig. 1. We set Ry = Ry = 14 nm, H; = Hy = 4 nm, and
HWL = 0.4 nm.
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Fig. 1. (left) The geometry of the QDM structure. (right) The difference between the
energy levels (a),(c) and the relaxation rates (b), (d) for structures with D = 120 nm
(a),(b) and D = 80 nm (c),(d). In (b) and (d) the solid and dashed lines represent
the contributions from the deformation potential coupling and from the piezoelectric

coupling, respectively.

The strain distribution is calculated by minimizing the elastic energy of the
inhomogeneous system of two InAs QDs in a GaAs crystal [13]:

1 1
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Here ¢;; are the Cartesian components of the strain tensor, Cj; are position-
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-dependent elastic constants, @ = (C11 + 2C12)(ar/ag — 1) in a QD and o = 0
in GaAs, where a; and ag are the lattice constants of InAs and GaAs, respec-
tively. The last term in Eq. (1) accounts for the mismatch of lattice constants,
shifting the equilibrium of the InAs crystal lattice to the state appropriately
stretched with respect to the ideal InAs crystal. Since the strain is calculated
with respect to the GaAs lattice and GaAs crystal coordinates are used, the re-
sults for the InAs dots must be rescaled to yield physical strain, according to
€;; = (ac/ar)€;j — 0;;(1 — ac/ar) [13]. The values of the material parameters are
taken from Ref. [12].

For an axially symmetric structure, it is convenient to perform the
computation in cylindrical coordinates. Therefore we denote the components
of the displacement in the local reference frame as u,,uy,u. and define the
corresponding components of the strain tensor,
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We will look for the minimum of E in the class of axially symmetric displace-
ment fields, that is, uy = 0 and Ou,/0¢ = Ju./0¢ = 0. This is an approximation,
since the crystal actually does not have the full rotational symmetry. However,
a standard calculation in the Cartesian coordinates shows that both the angular
dependence of the radial and axial displacements u,, u, and the magnitude of the

twisting displacement ug are negligibly small. With this approximation, the inte-
gration over ¢ in Eq. (1) can be performed analytically and one gets

E, = W/dTT/dZ [Cueﬁz + D(e%r + e$¢) + C44e§z + Ferregpy

+2C12€,(€rr + €4p) — 20(€rr + €4 + ezz)} , (2)

where D = 3C11/4 4 Ci2/4 + Cya/8 and F = C11/4 + 3C12/4 — Cy4a/8.

The displacement field minimizing F is found by the conjugate gradient
method on a square grid of 500 points along z and 333 points along r, representing
a cylinder with the height of 30 nm and the radius of 200 nm. A combination of
discretizations with forward and backward representations of derivatives is used
to avoid discretization-induced oscillations [13].

3. Electron states

In order to find approximate electron wave functions in the double-dot struc-
ture, we use the envelope function approach [16] combined with a variational
method which is an extension of the method of “adiabatic” separation of varia-
bles [15]. The first step is the determination of the local conduction band edge and
the electron effective mass tensor at each point of the structure. The assumption



1288 M. Pochwata, P. Machnikowski

here is that system parameters do not change too strongly over distances of the
order of the lattice constant. One considers a crystal with uniform composition
and strain values such as those at the considered point of the structure and uses its
conduction band parameters as local values in the inhomogeneous heterostructure.

The band structure in a strained system is determined from the 8-band k- p
(Kane) Hamiltonian with strain-induced terms (Bir—Pikus Hamiltonian) using the
Lowdin elimination [17]. The part of the Hamiltonian coupling conduction and
valence band states is [18]:

Heey = Alle (e 11+l L)e L )+ {le 1) [-v3V(hn 1 |
U (V31 = (so 1) =V (|| = V2(s0 | [)]
e 1y [~VBV(h || - U (V2 ||+ (so | 1)
+V (07| +v2(s0 11)] + e},

where “lh”, “hh”, and “so” denote the heavy-hole, light-hole and split-off sub-
bands, T and | represents the spin orientation in a given subband, A = E. +
(hk)?/(2mg) + ach, E. is the conduction band edge, h = Tre is the hydrostatic
strain, U = Po(k.+Y_; €j:k;)/v/3, and V = Po[ky—iky = (€2 —€y5)k;]/v/6. The
diagonal terms for the valence band states are Ey, = E, —p—¢q, Et)w = By —p+q,
and FEs, = E, — A —p, where E, is the valence band edge of an unstrained crystal,
A is the spin-orbit split-off parameter, p = ayh, ¢ = ble.. — (1/2)(€,r + €44)], and
the band structure parameters Ey, E., Fyo, Py, A and deformation potentials b, d
are taken from Ref. [12]. Neglecting the strain-related terms in U and V, which
are much smaller than the purely kinetic ones, we get the conduction band energy
up to the 2nd order in k, E(k) = E. + ach + h%k% /(2m ) + h?k2/(2m.), where
the in-plane and z components of the effective mass tensor are

Ep Ep Ep )

+

-1 -1
- 1
ML = Mo ( t oAEm | 6AEn | 3AE.

SAE, | 3AEL

where Ep = 2moP2/h?, AE; = E. + ach — E;, i = hh, lh, so.
The envelope function of an electron is found from the Schrédinger equation
with the Hamiltonian
0 h? 9] 0 h? 0 0 h? 0
T 0z2mi(r,2) 0z Oy2m.(r,z)dy 0z2m.(r,z) 0z
+E.(r,z) —e€z,

2F E
m;lzm01<1+ P P )

where we included an external electric field £. Following the concept of “adiabatic”
separation of variables, we first numerically solve the one-dimensional equation
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along the strongest confinement direction at each r,
2
_88z2mzh(r,z)8az + E.(r,z) —e€z| x(r,z) = E(r)x(r, z) .

Of interest are the lowest two solutions to this equation, representing the low-
est subband of confined states in the double well system. Next, we apply the
Ritz variational method [19], looking for the stationary points of the functional
Flp] = (|H ) in the class of ansatz functions (7, 2) = >, xi(r, 2)@i(r). We
first discretize the functional on the same lattice that was used in the computa-
tion of the strain and then derive an eigenvalue problem for the two-component
wave function ¢;(r), r = 1,2 (already in the discretized form) via stationarity
requirement with respect to the values at the discrete points. This procedure al-
lows for mixing of the two manifolds of states related to the two functions xi(r, 2)
and x2(r, z), which is essential when the two QDs are of similar size or when the
thinner dot has a larger in-plane size, so that a crossing of the one-dimensional
solutions appears at a certain 7.

4. Phonon-assisted relaxation

The rate for the phonon-assisted relaxation is found from the Fermi golden
rule formula [20]:

w= 2% > |Fu (k) [ns(we) + 1] 6 (hwk — AE),
k

where AFE is the energy difference between the two electron states, k and s
are a phonon wave vector and polarization (s = 1 for longitudinal, s = t1,t2
for the two transverse ones), wg s is the corresponding frequency, np(w) =
[exp(hw/(kgT)) — 1]71 is the Bose distribution at the temperature 7', and F,(k
are the carrier—phonon coupling constants. The latter have the form Fy(k)

(UI(C]ZP) + v,@) F(k), where

~—

F(k) = / Ay (r)e® s (1)

and the coefficients describing the electron—phonon coupling via deformation po-
tential and via Coulomb interaction with the phonon-induced polarization field
are, respectively,

(op) _ | _hk Pr— _j " ﬁM k

where ¢s is the speed of sound for the phonon branch s (¢ = 5150 m/s,
¢y = 2800 m/s), p = 5300 kg/m? is the crystal density, V is the normalization
volume for the phonon modes, o = —9 eV is the deformation potential constant,
d = 0.16 C/m? is the piezoelectric coupling constant, e is the elementary charge,
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and My(k) = 2[kzky(ér,s)z, kyk: (ks )z, kzkz (k. s)y] for a zinc-blende crystal. De-
formation potential is zero for transverse modes.

We apply the theory developed in the previous section to the InAs/GaAs
QDM. In Figs. la,c we show the two lowest energy levels as a function of the
electric field for two different values of the distance between the dots (left: 120 nm,
right: 80 nm). In each case, a clear anticrossing of the levels is visible. The width
of the anticrossing grows very fast when the distance between the dots decreases.

The electron relaxation rate for the two QDM structures is plotted in
Figs. 1b,d. For D = 120 nm, the energy difference at the resonance corresponds
to the range of high phonon spectral density. This results in fast relaxation on
ps time scales. Exactly at the resonance and in a certain range of electric fields
around the resonance, such that the energy difference is comparable with the anti-
crossing width, the wave functions have predominantly symmetric-antisymmetric
character. Therefore, the phonon-assisted process is a relaxation between two de-
localized states with no (or weak) transfer of the electron occupation between the
dots. Further away from the resonance, the eigenstates correspond to an electron
localized in one of the dots. Although the relaxation rate decreases considerably
as soon as the energies are detuned from the resonance, the relaxation remains rel-
atively fast (tens of picoseconds) also outside the resonance sector. In this case the
process has the character of phonon-assisted tunneling, consisting in an inelastic
transfer from the higher energy dot to the lower energy one. Comparison between
the contribution originating from the two coupling mechanisms shows that the
deformation potential coupling dominates over the piezoelectric one.

When the dots are placed at a smaller distance, the tunnel coupling con-
siderably increases the energy splitting (see Fig. 1c). Since the wave vectors (and
hence also energies) of phonons effectively coupled to a confined charge are limited
[20], the increased energy splitting suppresses the relaxation processes by many
orders of magnitude. The contribution from the piezoelectric coupling is now three
orders of magnitude smaller than that from the deformation potential coupling.

5. Conclusion

We have calculated phonon-assisted relaxation rates in a self-assembled
quantum dot molecule, including strain effects. Relaxation rates are very high
(picosecond range) for delocalized states near resonance in a narrow range of dot
separations around 10 nm. At such separations, relaxation remains relatively fast
(10-100 ps) also out of resonance, where the states are localized in different dots
(phonon-assisted tunneling process). Under such conditions, relaxation is domi-
nated by deformation potential coupling with longitudinal acoustic (LA) phonons.
For smaller separations (below 10 nm), large tunnel coupling shifts the states away
from each other and the relaxation becomes inefficient due to limited energies of
effectively coupled acoustic phonons. In both cases, relaxation is dominated by
deformation potential coupling to LA phonons.
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